Capacitor-Integrated Triboelectric Nanogenerator Based on Metal-Metal Contact for Current Amplification

被引:49
作者
Chung, Jihoon [1 ]
Yong, Hyungseok [1 ]
Moon, Haksung [1 ]
Choi, Seung Tae [1 ]
Bhatia, Divij [2 ]
Choi, Dukhyun [2 ]
Kim, Dongseob [3 ]
Lee, Sangmin [1 ]
机构
[1] Chung Ang Univ, Sch Mech Engn, 84 Heukseuk Ro, Seoul 06974, South Korea
[2] Kyung Hee Univ, Coll Engn, Dept Mech Engn, 1732 Deogyeong Daero, Yongin 17104, Gyeonggi, South Korea
[3] Korea Inst Ind Technol KITECH, Aircraft Syst Technol Grp, 57 Yangho Gil, Yeongcheon Si 38822, Gyeongsangbuk D, South Korea
基金
新加坡国家研究基金会;
关键词
capacitor-integrated; energy harvesting; Leyden jar effect; mechanical energy; triboelectric nanogenerators; ENERGY-CONVERSION EFFICIENCY; PORTABLE ELECTRONICS; PERFORMANCE; GENERATOR; OUTPUT;
D O I
10.1002/aenm.201703024
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electrical power of triboelectric nanogenerators (TENGs) is increased by surface modifications, and they can successfully power portable devices alone. However, modifying the material and its surface may limit the device lifetime, and most of the portable applications demonstrated in previous studies have excessive input conditions. In this study, a capacitor-integrated TENG (CI-TENG) that uses the fundamental mechanisms of the Leyden jar is developed. In this device, a long sheet metal (capacitor electrode)polymer-metal composite (TENG electrode) is rolled inside the casing cylinder, and a capacitor unit is fabricated at the end of the sheet composite. This new operating mechanism of the CI-TENG is analyzed in terms of the dielectric constant of the capacitor unit and the metal-to-metal contact between electrodes. By instantaneous charging and discharging of the capacitor unit inside the CI-TENG, it can generate a peak open-circuit voltage of 156 V and a peak closed-circuit current of 4.3 mA under manual input. It charges a capacitor more than three times faster than a conventional TENG does. Furthermore, the internal impedance of the CI-TENG is decreased to 200 k Omega without any external circuit.
引用
收藏
页数:9
相关论文
共 37 条
[31]   Electromagnetic energy harvesting from vibrations of multiple frequencies [J].
Yang, Bin ;
Lee, Chengkuo ;
Xiang, Wenfeng ;
Xie, Jin ;
He, Johnny Han ;
Kotlanka, Rama Krishna ;
Low, Siew Ping ;
Feng, Hanhua .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2009, 19 (03)
[32]   Paper-Based Origami Triboelectric Nanogenerators and Self-Powered Pressure Sensors [J].
Yang, Po-Kang ;
Lin, Zong-Hong ;
Pradel, Ken C. ;
Lin, Long ;
Li, Xiuhan ;
Wen, Xiaonan ;
He, Jr-Hau ;
Wang, Zhong Lin .
ACS NANO, 2015, 9 (01) :901-907
[33]   Sequential Infiltration Synthesis of Doped Polymer Films with Tunable Electrical Properties for Efficient Triboelectric Nanogenerator Development [J].
Yu, Yanhao ;
Li, Zhaodong ;
Wang, Yunming ;
Gong, Shaoqin ;
Wang, Xudong .
ADVANCED MATERIALS, 2015, 27 (33) :4938-4944
[34]   Hybridized Electromagnetic-Triboelectric Nanogenerator for Scavenging Biomechanical Energy for Sustainably Powering Wearable Electronics [J].
Zhang, Kewei ;
Wang, Xue ;
Yang, Ya ;
Wang, Zhong Lin .
ACS NANO, 2015, 9 (04) :3521-3529
[35]   Triboelectrification-Enabled Self-Charging Lithium-Ion Batteries [J].
Zhao, Kun ;
Yang, Ya ;
Liu, Xi ;
Wang, Zhong Lin .
ADVANCED ENERGY MATERIALS, 2017, 7 (21)
[36]   Triboelectric-Generator-Driven Pulse Electrodeposition for Micropatterning [J].
Zhu, Guang ;
Pan, Caofeng ;
Guo, Wenxi ;
Chen, Chih-Yen ;
Zhou, Yusheng ;
Yu, Ruomeng ;
Wang, Zhong Lin .
NANO LETTERS, 2012, 12 (09) :4960-4965
[37]   Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators [J].
Zi, Yunlong ;
Niu, Simiao ;
Wang, Jie ;
Wen, Zhen ;
Tang, Wei ;
Wang, Zhong Lin .
NATURE COMMUNICATIONS, 2015, 6