Spatiotemporal Data Mining: A Computational Perspective

被引:135
作者
Shekhar, Shashi [1 ]
Jiang, Zhe [1 ]
Ali, Reem Y. [1 ]
Eftelioglu, Emre [1 ]
Tang, Xun [1 ]
Gunturi, Venkata M. V. [2 ]
Zhou, Xun [3 ]
机构
[1] Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA
[2] IIIT Delhi Okhla, Indraprastha Inst Informat Technol, Dept Comp Sci & Engn, New Delhi 110020, India
[3] Univ Iowa, Dept Management Sci, Iowa City, IA 52242 USA
基金
美国国家科学基金会;
关键词
spatiotemporal data mining; survey; review; spatiotemporal statistics; spatiotemporal patterns; CORRELATION IMAGE-ANALYSIS; SPATIAL DATA; OUTLIER DETECTION; MODEL; PATTERNS; ALGORITHMS; DATABASES;
D O I
10.3390/ijgi4042306
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Explosive growth in geospatial and temporal data as well as the emergence of new technologies emphasize the need for automated discovery of spatiotemporal knowledge. Spatiotemporal data mining studies the process of discovering interesting and previously unknown, but potentially useful patterns from large spatiotemporal databases. It has broad application domains including ecology and environmental management, public safety, transportation, earth science, epidemiology, and climatology. The complexity of spatiotemporal data and intrinsic relationships limits the usefulness of conventional data science techniques for extracting spatiotemporal patterns. In this survey, we review recent computational techniques and tools in spatiotemporal data mining, focusing on several major pattern families: spatiotemporal outlier, spatiotemporal coupling and tele-coupling, spatiotemporal prediction, spatiotemporal partitioning and summarization, spatiotemporal hotspots, and change detection. Compared with other surveys in the literature, this paper emphasizes the statistical foundations of spatiotemporal data mining and provides comprehensive coverage of computational approaches for various pattern families. We also list popular software tools for spatiotemporal data analysis. The survey concludes with a look at future research needs.
引用
收藏
页码:2306 / 2338
页数:33
相关论文
共 192 条
[1]   BAYESIAN ALGORITHMS FOR ADAPTIVE CHANGE DETECTION IN IMAGE SEQUENCES USING MARKOV RANDOM-FIELDS [J].
AACH, T ;
KAUP, A .
SIGNAL PROCESSING-IMAGE COMMUNICATION, 1995, 7 (02) :147-160
[2]   STATISTICAL MODEL-BASED CHANGE DETECTION IN MOVING VIDEO [J].
AACH, T ;
KAUP, A ;
MESTER, R .
SIGNAL PROCESSING, 1993, 31 (02) :165-180
[3]  
Agrawal R, 2000, P 20 INT C VER LARG
[4]  
Agrawal R, 1998, AUTOMATIC SUBSPACE C
[5]   Hadoop-GIS: A High Performance Spatial Data Warehousing System over MapReduce [J].
Aji, Ablimit ;
Wang, Fusheng ;
Vo, Hoang ;
Lee, Rubao ;
Liu, Qiaoling ;
Zhang, Xiaodong ;
Saltz, Joel .
PROCEEDINGS OF THE VLDB ENDOWMENT, 2013, 6 (11) :1009-1020
[6]   A GENERALIZED ESTIMATING EQUATIONS APPROACH FOR SPATIALLY CORRELATED BINARY DATA - APPLICATIONS TO THE ANALYSIS OF NEUROIMAGING DATA [J].
ALBERT, PS ;
MCSHANE, LM .
BIOMETRICS, 1995, 51 (02) :627-638
[7]   TOWARDS A GENERAL-THEORY OF ACTION AND TIME [J].
ALLEN, JF .
ARTIFICIAL INTELLIGENCE, 1984, 23 (02) :123-154
[8]  
Ankerst M, 1999, SIGMOD RECORD, VOL 28, NO 2 - JUNE 1999, P49
[9]  
[Anonymous], MINING COMPLEX SPATI
[10]  
[Anonymous], CASCADING SPATIOTEMP