Mesoporous zinc ferrite/graphene composites: Towards ultra-fast and stable anode for lithium-ion batteries

被引:71
作者
Yao, Xiayin [1 ]
Kong, Junhua [1 ]
Zhou, Dan [1 ]
Zhao, Chenyang [1 ]
Zhou, Rui [1 ]
Lu, Xuehong [1 ]
机构
[1] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
关键词
ZNFE2O4; NANOPARTICLES; PERFORMANCE; CAPACITY; STORAGE; NANOCOMPOSITES; ELECTRODES;
D O I
10.1016/j.carbon.2014.08.007
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Mesoporous zinc ferrite (ZnFe2O4)/graphene composites are synthesized using a facile ambient-pressure method, i.e., co-precipitation of metal cations onto graphene oxide followed by solid state reaction to yield ZnFe2O4 nanoparticles anchored on reduced graphene oxide. The resultant ZnFe2O4/graphene composites have large specific surface area with mesopores, and the size of the ZnFe2O4 nanoparticles is less than 20 nm. When the composites are employed as an anode material for lithium-ion batteries, it exhibits superior electrochemical performances in term of high reversible capacity, good cyclic performance and excellent rate capability. Its reversible discharge capacities can be maintained at 870 mAh/g at 1.0 A/g for 100 cycles and consecutively 713 mAh/g at 2.0 A/g for another 100 cycles. Moreover, other graphene-based composites containing ferrites, such as cobalt ferrite and nickel ferrite, are also synthesized with this generic strategy which is promising for large-scale production of lithium-ion battery anode materials. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:493 / 499
页数:7
相关论文
共 40 条
  • [1] Porous Electrode Materials for Lithium-Ion Batteries - How to Prepare Them and What Makes Them Special
    Anh Vu
    Qian, Yuqiang
    Stein, Andreas
    [J]. ADVANCED ENERGY MATERIALS, 2012, 2 (09) : 1056 - 1085
  • [2] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657
  • [3] Carbon Coated ZnFe2O4 Nanoparticles for Advanced Lithium-Ion Anodes
    Bresser, Dominic
    Paillard, Elie
    Kloepsch, Richard
    Krueger, Steffen
    Fiedler, Martin
    Schmitz, Rene
    Baither, Dietmar
    Winter, Martin
    Passerini, Stefano
    [J]. ADVANCED ENERGY MATERIALS, 2013, 3 (04) : 513 - 523
  • [4] Porous ZnFe2O4 Nanospheres Grown on Graphene Nanosheets as a Superior Anode Material for Lithium Ion Batteries
    Chen, Xianglan
    Cheng, Bin
    Xu, Huayun
    Yang, Jian
    Qian, Yitai
    [J]. CHEMISTRY LETTERS, 2012, 41 (06) : 639 - 641
  • [5] Ding Y, ELECTROCHIM ACTA
  • [6] High performance lithium ion battery anodes based on carbon nanotube-silicon core-shell nanowires with controlled morphology
    Fan, Yu
    Zhang, Qing
    Xiao, Qizhen
    Wang, Xinghui
    Huang, Kai
    [J]. CARBON, 2013, 59 : 264 - 269
  • [7] One-pot solvothermal synthesized enhanced magnetic zinc ferrite-reduced graphene oxide composite material as adsor bent for methylene blue removal
    Fei, Peng
    Zhong, Ming
    Lei, Ziqiang
    Su, Bitao
    [J]. MATERIALS LETTERS, 2013, 108 : 72 - 74
  • [8] Fu YS, IND ENG CHEM RES
  • [9] Lithium storage in hollow spherical ZnFe2O4 as anode materials for lithium ion batteries
    Guo, Xianwei
    Lu, Xia
    Fang, Xiangpeng
    Mao, Ya
    Wang, Zhaoxiang
    Chen, Liquan
    Xu, Xiaoxue
    Yang, Hong
    Liu, Yinong
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (06) : 847 - 850
  • [10] Structure and electrochemical performance of nanostructured Fe3O4/carbon nanotube composites as anodes for lithium ion batteries
    He, Yang
    Huang, Ling
    Cai, Jin-Shu
    Zheng, Xiao-Mei
    Sun, Shi-Gang
    [J]. ELECTROCHIMICA ACTA, 2010, 55 (03) : 1140 - 1144