The simplest quartic fields with ideal class groups of exponents less than or equal to 2

被引:0
作者
Louboutin, SR [1 ]
机构
[1] UMR 6206, Inst Math Luminy, F-13288 Marseille 9, France
关键词
quartic field; simplest quartic field; class number; class group; zeta function;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The simplest quartic fields are the real cyclic quartic number fields defined by the irreducible quartic polynomials x(4) - mx(3) - 6x(2) + mx + 1, where m runs over the positive rational integers such that the odd part of m(2) + 16 is squarefree. We give an explicit lower bound for their class numbers which is much better than the previous known ones obtained by A. Lazarus. Then, using it, we determine the simplest quartic fields with ideal class groups of exponents less than or equal to2.
引用
收藏
页码:717 / 727
页数:11
相关论文
共 13 条
[1]  
GRAS MN, 1977, PUBL MATH FAC SCI BE, V2
[2]  
Hasse H., 1975, MATH ABHANDLUNGEN, V3, P285
[3]  
Lang S., 1990, Cyclotomic Fields, I, II, V121
[4]  
LAZARUS AJ, 1990, NUMBER THEORY /, P313
[5]   ON THE CLASS NUMBER AND UNIT INDEX OF SIMPLEST QUARTIC FIELDS [J].
LAZARUS, AJ .
NAGOYA MATHEMATICAL JOURNAL, 1991, 121 :1-13
[6]   Explicit upper bounds of the residue of zeta functions where S=1 for certain number fields [J].
Louboutin, S .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1998, 50 (01) :57-69
[7]  
Louboutin S, 2000, MATH NACHR, V215, P107
[8]   CLASS-NUMBER PROBLEMS FOR CUBIC NUMBER-FIELDS [J].
LOUBOUTIN, S .
NAGOYA MATHEMATICAL JOURNAL, 1995, 138 :199-208
[9]   The exponent three class group problem for some real cyclic cubic number fields [J].
Louboutin, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (02) :353-361