Nanostructure formation in bulk thermoelectric compounds in the pseudo binary PbTe-Sb2Te3 system

被引:4
作者
Ikeda, Teruyuki [1 ,2 ]
Snyder, G. Jeffrey [2 ]
机构
[1] Japan Sci & Technol Agcy, PRESTO, Kawaguchi, Saitama 3320012, Japan
[2] CALTECH, Mat Sci, Pasadena, CA 91125 USA
来源
THERMOELECTRIC MATERIALS 2010 - GROWTH, PROPERTIES, NOVEL CHARACTERIZATION METHODS AND APPLICATIONS | 2010年 / 1267卷
基金
日本科学技术振兴机构;
关键词
LATTICE THERMAL-CONDUCTIVITY; PHASE-CHANGE; PBTE; PERFORMANCE; KINETICS; SB2TE3; NUCLEATION; INTERFACES; REDUCTION; FIGURE;
D O I
10.1557/PROC-1267-DD06-07
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Studies on microstructures in thermoelectric compounds in the pseudobinary PbTe-Sb2Te3 system are overviewed and strategies to control the microstructure of thermoelectric compounds are discussed on the basis of the phase diagram and phase transformation theories. The morophology of solidification from the melt results in dendrite or lamellar structure depending on composition. The size-scales of the microstructures obtained by solidification can be controlled from the order of micrometers to tens of micrometers by controlling cooling rates (dendrites) or solidification velocity (lamellae). Lamellar and Widmanstatten structures are obtained by eutectoid (Pb2Sb6Te11 -> PbTe + Sb2Te3) and precipitation (PbTe (Sb2Te3). PbTe + Sb2Te3) reactions, respectively. These solid-state transformations show features with nanometer size-scales. For the eutectoid reaction the size-scale depends on annealing temperature and time. For precipitation, the size-scale depends on composition as well as cooling rate or annealing temperature. Such behavior can be understood in terms of phase transformation theories.
引用
收藏
页数:12
相关论文
共 55 条
[1]  
Aaronson H.I., 1962, DECOMPOSITION AUSTEN, P387
[2]  
ABRIKOSOV NK, 1965, INORG MATER, V1, P1944
[3]   Spinodal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectrics:: Enhanced performance in Pb1-xSnxTe-PbS [J].
Androulakis, John ;
Lin, Chia-Her ;
Kong, Hun-Jin ;
Uher, Ctirad ;
Wu, Chun-I ;
Hogan, Timothy ;
Cook, Bruce A. ;
Caillat, Thierry ;
Paraskevopoulos, Konstantinos M. ;
Kanatzidis, Mercouri G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (31) :9780-9788
[4]   Granulation, Phase Change, and Microstructure - Kinetics of Phase Change. III [J].
Avrami, M .
JOURNAL OF CHEMICAL PHYSICS, 1941, 9 (02) :177-184
[5]   Kinetics of phase change I - General theory [J].
Avrami, M .
JOURNAL OF CHEMICAL PHYSICS, 1939, 7 (12) :1103-1112
[6]  
Avrami M., 1940, J. Chem. Phys, V8, P212, DOI [10.1063/1.1750631, DOI 10.1063/1.1750631]
[7]   Prediction of dendrite arm spacings in unsteady- and steady-state heat flow of unidirectionally solidified binary alloys [J].
Bouchard, D ;
Kirkaldy, JS .
METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 1997, 28 (04) :651-663
[8]  
Carslaw H.S., 1986, Conduction of Heat In Solids, V2nde
[9]   Enhanced thermoelectric performance in PbTe-based superlattice structures from reduction of lattice thermal conductivity [J].
Caylor, JC ;
Coonley, K ;
Stuart, J ;
Colpitts, T ;
Venkatasubramanian, R .
APPLIED PHYSICS LETTERS, 2005, 87 (02)
[10]  
Chalmers B., 1964, Principle of Solidification