Locally superoptimal and adaptive projection density estimators

被引:7
作者
Bosq, D
机构
[1] 75013 Paris
关键词
D O I
10.1016/S1631-073X(02)02298-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a data-driven version of the density projection estimator in a general framework. We show that this estimator reaches a superoptimal rake on a dense set in the density class, and a quasi-optimal rake elsewhere. This set can be chosen by the statistician, and the superoptimal speed is reached for integrated quadratic error and almost sure uniform convergence. An adaptive version of the estimator is also considered.
引用
收藏
页码:591 / 595
页数:5
相关论文
共 7 条
[1]  
BOSQ D, 2002, RAPPORT TECHNIQUE LS
[2]  
Cencov N. N., 1962, SOV MATH, V3, P1559
[3]  
Donoho DL, 1996, ANN STAT, V24, P508
[4]  
Efromovich S, 1999, NONPARAMETRIC CURVE
[6]   Model selection criteria with data dependent penalty, with applications to data-driven Neyman smooth tests [J].
Lee, GH ;
Hart, JD .
JOURNAL OF NONPARAMETRIC STATISTICS, 2000, 12 (05) :683-707
[7]  
SAZONOV VV, 1968, SANKHYA A, V30, P191