Dynamics of matter-wave condensates with time-dependent two-and three-body interactions trapped by a linear potential in the presence of atom gain or loss

被引:14
作者
Belobo, D. Belobo [1 ]
Ben-Bolie, G. H. [1 ,2 ]
Kofane, T. C. [1 ,2 ,3 ,4 ]
机构
[1] Univ Yaounde I, Fac Sci, Dept Phys, Lab Atom & Radiat, Yaounde, Cameroon
[2] Univ Yaounde I, CETIC, Yaounde, Cameroon
[3] Univ Yaounde I, Fac Sci, Dept Phys, Lab Mech, Yaounde, Cameroon
[4] Abdus Salam Int Ctr Theoret Phys, I-34014 Trieste, Italy
来源
PHYSICAL REVIEW E | 2014年 / 89卷 / 04期
关键词
BOSE-EINSTEIN CONDENSATION; NONLINEAR SCHRODINGER-EQUATION; SCATTERING; SOLITONS; BRIGHT; GAS;
D O I
10.1103/PhysRevE.89.042913
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Bose-Einstein condensates with time varying two-and three-body interatomic interactions, confined in a linear potential and exchanging atoms with the thermal cloud are investigated. Using the extended tanh-function method with an auxiliary equation, i.e., the Lenard equation, many exact solutions describing the dynamics of matter-wave condensates are derived. An important issue is the time management of the cubic and the quintic nonlinearities by tuning the rate of exchange of atoms between the condensate and the thermal background. In addition, adjusting the strength of the linear potential, the rate of exchange of atoms, and many other free parameters allow one to control many features of the condensate such as its height, width, position, velocity, acceleration, and its direction, respectively. Full numerical solutions corroborate the analytical predictions.
引用
收藏
页数:15
相关论文
共 59 条
[1]   Compactons in Nonlinear Schrodinger Lattices with Strong Nonlinearity Management [J].
Abdullaev, F. Kh. ;
Kevrekidis, P. G. ;
Salerno, M. .
PHYSICAL REVIEW LETTERS, 2010, 105 (11)
[2]   Gap solitons in Bose-Einstein condensates in linear and nonlinear optical lattices [J].
Abdullaev, Fatkhulla ;
Abdumalikov, Abdulaziz ;
Galimzyanov, Ravil .
PHYSICS LETTERS A, 2007, 367 (1-2) :149-155
[3]   Collective oscillations of one-dimensional Bose-Einstein gas in a time-varying trap potential and atomic scattering length [J].
Abdullaev, FK ;
Garnier, J .
PHYSICAL REVIEW A, 2004, 70 (05) :053604-1
[4]   Lax pairs of time-dependent Gross-Pitaevskii equation [J].
Al Khawaja, Usama .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (31) :9679-9691
[5]   OBSERVATION OF BOSE-EINSTEIN CONDENSATION IN A DILUTE ATOMIC VAPOR [J].
ANDERSON, MH ;
ENSHER, JR ;
MATTHEWS, MR ;
WIEMAN, CE ;
CORNELL, EA .
SCIENCE, 1995, 269 (5221) :198-201
[6]   Solitons with cubic and quintic nonlinearities modulated in space and time [J].
Avelar, A. T. ;
Bazeia, D. ;
Cardoso, W. B. .
PHYSICAL REVIEW E, 2009, 79 (02)
[7]  
Belobo Belobo D., 2011, FAR E J DYNAM SYST, V16, P107
[8]  
Belobo D. Belobo, PHYS REV E IN PRESS
[9]   MODULATIONAL INSTABILITY OF A BOSE-EINSTEIN CONDENSATE BEYOND THE FERMI PSEUDOPOTENTIAL WITH A TIME-DEPENDENT COMPLEX POTENTIAL [J].
Belobo, Didier Belobo ;
Ben-Bolie, Germain Hubert ;
Ekogo, Thierry Blanchard ;
Tiofack, C. G. Latchio ;
Kofane, Timoleon Crepin .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2012, 26 (30)
[10]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964