Rosetta observations of solar wind interaction with the comet 67P/Churyumov-Gerasimenko

被引:47
作者
Broiles, T. W. [1 ]
Burch, J. L. [1 ]
Clark, G. [2 ,3 ]
Koenders, C. [4 ]
Behar, E. [5 ,6 ]
Goldstein, R. [1 ]
Fuselier, S. A. [1 ,7 ]
Mandt, K. E. [1 ]
Mokashi, P. [1 ]
Samara, M. [2 ]
机构
[1] Southwest Res Inst SwRI, Space Sci & Engn Div, San Antonio, TX 78238 USA
[2] NASA, Goddard Space Flight Ctr, Heliophys Div, Greenbelt, MD 20771 USA
[3] Catholic Univ Amer, Dept Phys & Astron, Washington, DC 20064 USA
[4] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterr Phys, D-38106 Braunschweig, Germany
[5] Swedish Inst Space Phys, S-98128 Kiruna, Sweden
[6] Lulea Univ Technol, Dept Comp Sci Elect & Space Engn, S-98128 Kiruna, Sweden
[7] Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX 78249 USA
基金
美国国家航空航天局; 英国科学技术设施理事会;
关键词
solar wind; comets: general; plasmas; Sun: magnetic fields; methods: observational; methods: data analysis; ION; PICKUP; WEAK; IES;
D O I
10.1051/0004-6361/201526046
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. The Rosetta spacecraft arrived at the comet 67P/Churyumov-Gerasimenko on August 6, 2014, which has made it possible to perform the first study of the solar wind interacting with the coma of a weakly outgassing comet. Aims. It is shown that the solar wind experiences large deflections (>45 degrees) in the weak coma. The average ion velocity slows from the mass loading of newborn cometary ions, which also slows the interplanetary magnetic field (IMF) relative to the solar wind ions and subsequently creates a Lorentz force in the frame of the solar wind. The Lorentz force in the solar wind frame accelerates ions in the opposite direction of cometary pickup ion flow, and is necessary to conserve momentum. Methods. Data from the Ion and Electron Sensor are studied over several intervals of interest when significant solar wind deflection was observed. The deflections for protons and for He++ were compared with the flow of cometary pickup ions using the instrument's frame of reference. We then fit the data with a three-dimensional Maxwellian, and rotated the flow vectors into the Comet Sun Equatorial coordinate system, and compared the flow to the spacecraft's position and to the local IMF conditions. Results. Our observations show that the solar wind may be deflected in excess of 45 degrees from the anti-sunward direction. Furthermore, the deflections change direction on a variable timescale. Solar wind protons are consistently more deflected than the He++. The deflections are not ordered by the spacecraft's position relative to the comet, but large changes in deflection are related to changes in the orthogonal IMF components.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] The root of a comet tail: Rosetta ion observations at comet 67P/Churyumov-Gerasimenko
    Behar, E.
    Nilsson, H.
    Henri, P.
    Bercic, L.
    Nicolaou, G.
    Wieser, G. Stenberg
    Wieser, M.
    Tabone, B.
    Saillenfest, M.
    Goetz, C.
    ASTRONOMY & ASTROPHYSICS, 2018, 616
  • [2] Solar flares observed by Rosetta at comet 67P/Churyumov-Gerasimenko
    Edberg, N. J. T.
    Johansson, F. L.
    Eriksson, A., I
    Andrews, D. J.
    Hajra, R.
    Henri, P.
    Wedlund, C. S.
    Alho, M.
    Thiemann, E.
    ASTRONOMY & ASTROPHYSICS, 2019, 630
  • [3] Plasma Turbulence at Comet 67P/Churyumov-Gerasimenko: Rosetta Observations
    Ruhunusiri, S.
    Howes, G. G.
    Halekas, J. S.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2020, 125 (09)
  • [4] Plasma properties of suprathermal electrons near comet 67P/Churyumov-Gerasimenko with Rosetta
    Myllys, M.
    Henri, P.
    Galand, M.
    Heritier, K. L.
    Gilet, N.
    Goldstein, R.
    Eriksson, A., I
    Johansson, F.
    Deca, J.
    ASTRONOMY & ASTROPHYSICS, 2019, 630
  • [5] Electron acceleration at comet 67P/Churyumov-Gerasimenko
    Goldstein, R.
    Burch, J. L.
    Llera, K.
    Mokashi, P.
    Nilsson, H.
    Dokgo, K.
    Eriksson, A.
    Odelstad, E.
    Richter, I
    ASTRONOMY & ASTROPHYSICS, 2019, 630
  • [6] Development of a cometosheath at comet 67P/Churyumov-Gerasimenko A case study comparison of Rosetta observations
    Williamson, H. N.
    Nilsson, H.
    Wieser, G. Stenberg
    Moeslinger, A.
    Goetz, C.
    ASTRONOMY & ASTROPHYSICS, 2022, 660
  • [7] Mass-loading of the solar wind at 67P/Churyumov-Gerasimenko Observations and modelling
    Behar, E.
    Lindkvist, J.
    Nilsson, H.
    Holmstrom, M.
    Stenberg-Wieser, G.
    Ramstad, R.
    Goetz, C.
    ASTRONOMY & ASTROPHYSICS, 2016, 596
  • [8] Optical observations of Comet 67P/Churyumov-Gerasimenko
    Weiler, M
    Rauer, H
    Helbert, J
    ASTRONOMY & ASTROPHYSICS, 2004, 414 (02) : 749 - 755
  • [9] Properties of the singing comet waves in the 67P/Churyumov-Gerasimenko plasma environment as observed by the Rosetta mission
    Breuillard, H.
    Henri, P.
    Bucciantini, L.
    Volwerk, M.
    Karlsson, T.
    Eriksson, A.
    Johansson, F.
    Odelstad, E.
    Richter, I
    Goetz, C.
    Vallieres, X.
    Hajra, R.
    ASTRONOMY & ASTROPHYSICS, 2019, 630
  • [10] Suprathermal electron environment of comet 67P/Churyumov-Gerasimenko: Observations from the Rosetta Ion and Electron Sensor
    Clark, G.
    Broiles, T. W.
    Burch, J. L.
    Collinson, G. A.
    Cravens, T.
    Frahm, R. A.
    Goldstein, J.
    Goldstein, R.
    Mandt, K.
    Mokashi, P.
    Samara, M.
    Pollock, C. J.
    ASTRONOMY & ASTROPHYSICS, 2015, 583