Fault Tolerance of λ-Optimal Graphs

被引:0
作者
Chen, Xing [1 ]
Xiong, Wei [2 ]
Meng, Jixiang [2 ]
机构
[1] Xinjiang Inst Engn, Urumqi 830091, Xinjiang, Peoples R China
[2] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China
关键词
fault tolerance; optimal edge connected; t-lambda-optimal edge connected; SUPER EDGE-CONNECTIVITY; TRANSITIVE GRAPHS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A connected graph G is lambda-optimal if lambda(G) = delta(G). A lambda-optimal graph is t-lambda optimal connected if for any edge set S subset of E(G) with vertical bar S vertical bar <= t, G - S is still lambda-optimal. The maximum integer of such t denoted by O-lambda(G) is the edge fault tolerance with respect to lambda-optimal edge connectivity. In this paper, we show that min{lambda' - delta, delta - 1} <= O-lambda(G) <= delta - 1, where lambda' is the restricted edge connectivity of G. More refined bounds are given for regular graphs and edge transitive graphs. In addition, we also give the bound of O-lambda (G) for the hierarchical product of graphs.
引用
收藏
页码:355 / 364
页数:10
相关论文
共 12 条
  • [1] Bondy J., 2008, GRADUATE TEXTS MATH
  • [2] A GRAPH-THEORETIC APPROACH TO A COMMUNICATIONS PROBLEM
    CHARTRAND, G
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1966, 14 (04) : 778 - &
  • [3] ON COMPUTING A CONDITIONAL EDGE-CONNECTIVITY OF A GRAPH
    ESFAHANIAN, AH
    HAKIMI, SL
    [J]. INFORMATION PROCESSING LETTERS, 1988, 27 (04) : 195 - 199
  • [4] Maximally edge-connected and vertex-connected graphs and digraphs: A survey
    Hellwig, Angelika
    Volkmann, Lutz
    [J]. DISCRETE MATHEMATICS, 2008, 308 (15) : 3265 - 3296
  • [5] Edge fault tolerance of graphs with respect to super edge connectivity
    Hong, Yanmei
    Meng, Jixiang
    Zhang, Zhao
    [J]. DISCRETE APPLIED MATHEMATICS, 2012, 160 (4-5) : 579 - 587
  • [6] Li QL, 1999, NETWORKS, V33, P157, DOI 10.1002/(SICI)1097-0037(199903)33:2<157::AID-NET6>3.0.CO
  • [7] 2-D
  • [8] Optimally super-edge-connected transitive graphs
    Meng, JX
    [J]. DISCRETE MATHEMATICS, 2003, 260 (1-3) : 239 - 248
  • [9] Oellermann OR., 1996, Congr Numer, V116, P231
  • [10] Tindell R., 1996, COMBINATORIAL NETWOR, P41