Fast computation of voxel-level brain connectivity maps from resting-state functional MRI using l1-norm as approximation of Pearson's temporal correlation: Proof-of-concept and example vector hardware implementation

被引:12
作者
Minati, Ludovico [1 ,2 ]
Zaca, Domenico [2 ]
D'Incerti, Ludovico [3 ]
Jovicich, Jorge [2 ]
机构
[1] Fdn IRCCS Ist Neurol Carlo Besta, Dept Sci, Milan, Italy
[2] Univ Trento, MR Lab, Ctr Mind Brain Sci, I-38100 Trento, TN, Italy
[3] Fdn IRCCS Ist Neurol Carlo Besta, Neuroradiol Unit, Milan, Italy
关键词
Resting-state functional MRI (rs-fMRI); Brain networks; Connectome; Parallel processing; Correlation coefficient; l(1)-Norm; Vector hardware co-processor; NEURAL-NETWORKS; FMRI;
D O I
10.1016/j.medengphy.2014.06.012
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
An outstanding issue in graph-based analysis of resting-state functional MRI is choice of network nodes. Individual consideration of entire brain voxels may represent a less biased approach than parcellating the cortex according to pre-determined atlases, but entails establishing connectedness for 1(9)-1(11) links, with often prohibitive computational cost. Using a representative Human Connectome Project dataset, we show that, following appropriate time-series normalization, it may be possible to accelerate connectivity determination replacing Pearson correlation with l(1)-norm. Even though the adjacency matrices derived from correlation coefficients and l(1)-norms are not identical, their similarity is high. Further, we describe and provide in full an example vector hardware implementation of l(1)-norm on an array of 4096 zero instruction-set processors. Calculation times <1000 s are attainable, removing the major deterrent to voxel-based resting-sate network mapping and revealing fine-grained node degree heterogeneity. l(1) norm should be given consideration as a substitute for correlation in very high-density resting-state functional connectivity analyses. (C) 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1212 / 1217
页数:6
相关论文
共 24 条
[1]   Cortical Hubs Revealed by Intrinsic Functional Connectivity: Mapping, Assessment of Stability, and Relation to Alzheimer's Disease [J].
Buckner, Randy L. ;
Sepulcre, Jorge ;
Talukdar, Tanveer ;
Krienen, Fenna M. ;
Liu, Hesheng ;
Hedden, Trey ;
Andrews-Hanna, Jessica R. ;
Sperling, Reisa A. ;
Johnson, Keith A. .
JOURNAL OF NEUROSCIENCE, 2009, 29 (06) :1860-1873
[2]   Activity Dependent Degeneration Explains Hub Vulnerability in Alzheimer's Disease [J].
de Haan, Willem ;
Mott, Katherine ;
van Straaten, Elisabeth C. W. ;
Scheltens, Philip ;
Stam, Cornelis J. .
PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (08)
[3]  
DECK WC, 2010, TARGET TRACKING ZERO
[4]   Artificial neural networks: a review of commercial hardware [J].
Dias, FM ;
Antunes, A ;
Mota, AM .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2004, 17 (08) :945-952
[5]   Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging [J].
Fox, Michael D. ;
Raichle, Marcus E. .
NATURE REVIEWS NEUROSCIENCE, 2007, 8 (09) :700-711
[6]   The minimal preprocessing pipelines for the Human Connectome Project [J].
Glasser, Matthew F. ;
Sotiropoulos, Stamatios N. ;
Wilson, J. Anthony ;
Coalson, Timothy S. ;
Fischl, Bruce ;
Andersson, Jesper L. ;
Xu, Junqian ;
Jbabdi, Saad ;
Webster, Matthew ;
Polimeni, Jonathan R. ;
Van Essen, David C. ;
Jenkinson, Mark .
NEUROIMAGE, 2013, 80 :105-124
[7]  
Intel Inc, 2014, INT 64 IA 32 ARCH OP
[8]   IMPLEMENTING THE NEW ZERO INSTRUCTION SET COMPUTER (ZISC036) FROM IBM FOR A HIGGS SEARCH [J].
LINDBLAD, T ;
LINDSEY, CS ;
MINERSKJOLD, M ;
SEKHNIAIDZE, G ;
SZEKELY, G ;
EIDE, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1995, 357 (01) :192-194
[9]   Image processing using RBF like neural networks:: A ZISC-036 based fully parallel implementation solving real world and real complexity industrial problems [J].
Madani, K ;
De Trémiolles, G ;
Tannhof, P .
APPLIED INTELLIGENCE, 2003, 18 (02) :195-213
[10]  
McBader S, 2002, LECT NOTES COMPUT SC, V2438, P1084