ON A NONLINEAR FUZZY DIFFERENCE EQUATION

被引:4
|
作者
Yalcinkaya, Ibrahim [1 ]
Caliskan, Vildan [2 ]
Tollu, Durhasan Turgut [1 ]
机构
[1] Necmettin Erbakan Univ, Dept Math & Comp Sci, Konya, Turkey
[2] Necmettin Erbakan Univ, Grad Sch Nat & Appl Sci, Konya, Turkey
来源
COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS | 2022年 / 71卷 / 01期
关键词
Asymptotic behavior; alpha-cuts; boundedness; fuzzy difference equations; fuzzy number; stability;
D O I
10.31801/cfsuasmas.861915
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we investigate the existence, the boundedness and the asymptotic behavior of the positive solutions of the fuzzy difference equation z(n+1) = Az(n-1)/1 + Z(n-2)(p),n is an element of N-0 where (z(n)) is a sequence of positive fuzzy numbers, A and the initial conditions z(-j) (j = 0, 1,2) are positive fuzzy numbers and p is a positive integer.
引用
收藏
页码:68 / 78
页数:11
相关论文
共 50 条
  • [1] Dynamic Behavior of a Fourth-Order Nonlinear Fuzzy Difference Equation
    Yalcinkaya, Ibrahim
    Er, Bilal
    Tollu, Durhasan Turgut
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2025, 38 (01): : 275 - 290
  • [2] Boundedness and asymptotic behavior of the solutions of a fuzzy difference equation
    Papaschinopoulos, G
    Stefanidou, G
    FUZZY SETS AND SYSTEMS, 2003, 140 (03) : 523 - 539
  • [3] DYNAMICS OF A HIGH-ORDER NONLINEAR FUZZY DIFFERENCE EQUATION
    Wang, Changyou
    Li, Jiahui
    Jia, Lili
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (01): : 404 - 421
  • [4] BEHAVIOR OF SOLUTIONS TO A FUZZY NONLINEAR DIFFERENCE EQUATION
    Zhang, Q. H.
    Yang, L. H.
    Liao, D. X.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2012, 9 (02): : 1 - 12
  • [5] On a fuzzy difference equation
    Hatir, Esref
    Mansour, Toufik
    Yalcinkaya, Ibrahim
    UTILITAS MATHEMATICA, 2014, 93 : 135 - 151
  • [6] Dynamic analysis of high-order fuzzy difference equation
    Gumus, Mehmet
    Yalcinkaya, Ibrahim
    Tollu, Durhasan Turgut
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2025, 71 (01) : 1285 - 1308
  • [7] On the dynamics of a higher-order fuzzy difference equation with rational terms
    Yalcinkaya, Ibrahim
    El-Metwally, Hamdy
    Bayram, Mustafa
    Tollu, Durhasan Turgut
    SOFT COMPUTING, 2023, 27 (15) : 10469 - 10479
  • [8] FUZZY LOGISTIC DIFFERENCE EQUATION
    Khastan, A.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2018, 15 (07): : 55 - 66
  • [9] The periodic nature of the positive solutions of a nonlinear fuzzy max-difference equation
    Stefanidou, G.
    Papaschinopoulos, G.
    INFORMATION SCIENCES, 2006, 176 (24) : 3694 - 3710
  • [10] On the fuzzy difference equation xn+1=A+xn/xn-m
    Papaschinopoulos, G
    Papadopoulos, BK
    FUZZY SETS AND SYSTEMS, 2002, 129 (01) : 73 - 81