Finite-volume and thermal effects in the leading-HVP contribution to muonic (g-2)

被引:20
作者
Hansen, M. T. [1 ]
Patella, A. [2 ,3 ]
机构
[1] CERN, Theoret Phys Dept, CH-1211 Geneva 23, Switzerland
[2] Humboldt Univ, Inst Phys, Zum Grossen Windkanal 6, D-12489 Berlin, Germany
[3] Humboldt Univ, IRIS Adlershof, Zum Grossen Windkanal 6, D-12489 Berlin, Germany
关键词
Effective Field Theories; Lattice QCD; Lattice Quantum Field Theory; Non-perturbative Effects; QUANTUM-FIELD THEORIES; ENERGY-SPECTRUM; DEPENDENCE;
D O I
10.1007/JHEP10(2020)029
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The leading finite-volume and thermal effects, arising in numerical lattice QCD calculations of a mu HVP,LO equivalent to g-2 mu HVP,LO/2, are determined to all orders with respect to the interactions of a generic, relativistic effective field theory of pions. In contrast to earlier work [1] based in the finite-volume Hamiltonian, the results presented here are derived by formally summing all Feynman diagrams contributing to the Euclidean electromagnetic-current two-point function, with any number of internal pion loops and interaction vertices. As was already found in ref. [1], the leading finite-volume corrections to a mu HVP,LO scale as exp[-mL] where m is the pion mass and L is the length of the three periodic spatial directions. In this work we additionally control the two sub-leading exponentials, scaling as exp[-2mL] and exp[-3 mL]. As with the leading term, the coefficient of these is given by the forward Compton amplitude of the pion, meaning that all details of the effective theory drop out of the final result. Thermal effects are additionally considered, and found to be sub-percent-level for typical lattice calculations. All finite-volume corrections are presented both for a mu HVP,LO and for each time slice of the two-point function, with the latter expected to be particularly useful in correcting small to intermediate current separations, for which the series of exponentials exhibits good convergence.
引用
收藏
页数:76
相关论文
共 54 条
[1]  
[Anonymous], 2018, PHYS REV LETT
[2]  
[Anonymous], 2014, JHEP
[3]  
[Anonymous], 2020, G 2 THEORY INITIATIV
[4]  
Asmussen Nils, 2018, EPJ Web of Conferences, V179, DOI 10.1051/epjconf/201817901017
[5]   Light quark vacuum polarization at the physical point and contribution to the muon g-2 [J].
Aubin, Christopher ;
Blum, Thomas ;
Tu, Cheng ;
Golterman, Maarten ;
Jung, Chulwoo ;
Peris, Santiago .
PHYSICAL REVIEW D, 2020, 101 (01)
[6]   Finite-volume effects in the muon anomalous magnetic moment on the lattice [J].
Aubin, Christopher ;
Blum, Thomas ;
Chau, Peter ;
Golterman, Maarten ;
Peris, Santiago ;
Tu, Cheng .
PHYSICAL REVIEW D, 2016, 93 (05)
[7]  
Barton G., 1965, Introduction to Dispersion Techniques in Field Theory
[8]   Final report of the E821 muon anomalous magnetic moment measurement at BNL -: art. no. 072003 [J].
Bennett, GW ;
Bousquet, B ;
Brown, HN ;
Bunce, G ;
Carey, RM ;
Cushman, P ;
Danby, GT ;
Debevec, PT ;
Deile, M ;
Deng, H ;
Deninger, W ;
Dhawan, SK ;
Druzhinin, VP ;
Duong, L ;
Efstathiadis, E ;
Farley, FJM ;
Fedotovich, GV ;
Giron, S ;
Gray, FE ;
Grigoriev, D ;
Grosse-Perdekamp, M ;
Grossmann, A ;
Hare, MF ;
Hertzog, DW ;
Huang, X ;
Hughes, VW ;
Iwasaki, M ;
Jungmann, K ;
Kawall, D ;
Kawamura, M ;
Khazin, BI ;
Kindem, J ;
Krienen, F ;
Kronkvist, I ;
Lam, A ;
Larsen, R ;
Lee, YY ;
Logashenko, I ;
McNabb, R ;
Meng, W ;
Mi, J ;
Miller, JP ;
Mizumachi, Y ;
Morse, WM ;
Nikas, D ;
Onderwater, CJG ;
Orlov, Y ;
Özben, CS ;
Paley, JM ;
Peng, Q .
PHYSICAL REVIEW D, 2006, 73 (07)
[9]   Measurement of the negative muon anomalous magnetic moment to 0.7 ppm [J].
Bennett, GW ;
Bousquet, B ;
Brown, HN ;
Bunce, G ;
Carey, RM ;
Cushman, P ;
Danby, GT ;
Debevec, PT ;
Deile, M ;
Deng, H ;
Dhawan, SK ;
Druzhinin, VP ;
Duong, L ;
Farley, FJM ;
Fedotovich, GV ;
Gray, FE ;
Grigoriev, D ;
Grosse-Perdekamp, M ;
Grossmann, A ;
Hare, MF ;
Hertzog, DW ;
Huang, X ;
Hughes, VW ;
Iwasaki, M ;
Jungmann, K ;
Kawall, D ;
Khazin, BI ;
Krienen, F ;
Kronkvist, I ;
Lam, A ;
Larsen, R ;
Lee, YY ;
Logashenko, I ;
McNabb, R ;
Meng, W ;
Miller, JP ;
Morse, WM ;
Nikas, D ;
Onderwater, CJG ;
Orlov, Y ;
Ozben, CS ;
Paley, JM ;
Peng, Q ;
Polly, CC ;
Pretz, J ;
Prigl, R ;
Putlitz, GZ ;
Qian, T ;
Redin, SI ;
Rind, O .
PHYSICAL REVIEW LETTERS, 2004, 92 (16) :161802-1
[10]   Vector correlators in lattice QCD: Methods and applications [J].
Bernecker, David ;
Meyer, Harvey B. .
EUROPEAN PHYSICAL JOURNAL A, 2011, 47 (11)