Microdischarges in ceramic foams and honeycombs

被引:63
作者
Hensel, K. [1 ]
机构
[1] Comenius Univ, Div Environm Phys, Dept Astron Earth Phys & Meteorol, Fac Math Phys & Informat, Bratislava 84248, Slovakia
关键词
ATMOSPHERIC-PRESSURE; SLIDING DISCHARGE; AIR; 2-HEPTANONE; GENERATION;
D O I
10.1140/epjd/e2009-00073-1
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Microdischarges in spatially confined geometries, such as microcavities and micropores of various materials, present a promising method for the generation and maintenance of stable discharges at atmospheric pressure. They have been successfully used in many biomedical, environmental and industrial applications. The paper presents two relatively new types of discharges in confined volumes - a capillary microdischarge in ceramic foams and a sliding discharge inside the capillaries of ceramic honeycombs - and describes their basic physical properties and mechanisms. Microdischarges inside the microporous ceramic foams develop from the surface barrier discharge if the amplitude of the applied voltage reaches given threshold, but only for a specific pore size. Sliding discharge inside the honeycomb capillaries is produced by a combination of AC barrier discharge inside catalytic pellet bed coupled in series with DC powered honeycomb monolith. Both discharges produce relatively cold microplasmas with high level of non-equilibrium. The basic characteristics of the microdischarges, addressing the effects of the applied voltage, discharge power, pore size, length and diameter of the capillaries are discussed.
引用
收藏
页码:141 / 148
页数:8
相关论文
共 35 条
[1]   Oxidation of 2-heptanone in air by a DBD-type plasma generated within a honeycomb monolith supported Pt-based catalyst [J].
Ayrault, C ;
Barrault, J ;
Blin-Simiand, N ;
Jorand, F ;
Pasquiers, S ;
Rousseau, A ;
Tatibouët, JM .
CATALYSIS TODAY, 2004, 89 (1-2) :75-81
[2]   Microplasmas and applications [J].
Becker, KH ;
Schoenbach, KH ;
Eden, JG .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2006, 39 (03) :R55-R70
[3]   Removal of 2-heptanone by dielectric barrier discharges - The effect of a catalyst support [J].
Blin-Simiand, N ;
Tardiveau, P ;
Risacher, A ;
Jorand, F ;
Pasquiers, S .
PLASMA PROCESSES AND POLYMERS, 2005, 2 (03) :256-262
[4]   Ozone production by nanoporous dielectric barrier glow discharge in atmospheric pressure air [J].
Cho, J. H. ;
Koo, I. G. ;
Choi, M. Y. ;
Lee, W. M. .
APPLIED PHYSICS LETTERS, 2008, 92 (10)
[5]   Generation of microdischarges in porous materials [J].
Hensel, K ;
Matsui, Y ;
Katsura, S ;
Mizuno, A .
CZECHOSLOVAK JOURNAL OF PHYSICS, 2004, 54 :C683-C689
[6]   Dc microdischarges inside porous ceramics [J].
Hensel, K ;
Katsura, S ;
Mizuno, A .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2005, 33 (02) :574-575
[7]  
HENSEL K, 2008, P 11 INT S HIGH PRES
[8]   Sliding discharge inside glass capillaries [J].
Hensel, Karol ;
Sato, Satoshi ;
Mizuno, Akira .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2008, 36 (04) :1282-1283
[9]   ICCD camera imaging of discharges in porous ceramics [J].
Hensel, Karol ;
Tardiveau, Pierre .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2008, 36 (04) :980-981
[10]   Electrical and optical properties of AC microdischarges in porous ceramics [J].
Hensel, Karol ;
Martisovit, Viktor ;
Machala, Zdenko ;
Janda, Mario ;
Lestinsky, Michal ;
Tardiveau, Pierre ;
Mizuno, Akira .
PLASMA PROCESSES AND POLYMERS, 2007, 4 (7-8) :682-693