Regular subgraphs of random graphs

被引:10
作者
Bollobas, Bela [1 ]
Kim, Jeong Han
Verstraete, Jacques
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
[2] Univ Cambridge Trinity Coll, Cambridge CB2 1TQ, England
[3] Microsoft Corp, Redmond, WA 98052 USA
[4] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
关键词
D O I
10.1002/rsa.20123
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we prove that there exists a function rho(k) = (4+o(l))k such that G(n, rho/n) contains a k-regular graph with high probability whenever rho > rho(k). In the case of k 3, it is also shown that G(n, rho/n) contains a 3-regular graph with high probability whenever p > approximate to 5.1494. These are the first constant bounds on the average degree in G(n,p) for the existence of a k-regular subgraph. We also discuss the appearance of 3-regular subgraphs in cores of random graphs. (c) 2006 Wiley Periodicals, Inc.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 27 条
[1]   REGULAR SUBGRAPHS OF ALMOST REGULAR GRAPHS [J].
ALON, N ;
FRIEDLAND, S ;
KALAI, G .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1984, 37 (01) :79-91
[2]   Combinatorial Nullstellensatz [J].
Alon, N .
COMBINATORICS PROBABILITY & COMPUTING, 1999, 8 (1-2) :7-29
[3]  
Alon N., 2008, Wiley-Interscience Series in Discrete Mathematics and Optimization, VThird
[4]   The difference between consecutive primes, II [J].
Baker, RC ;
Harman, G ;
Pintz, J .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2001, 83 :532-562
[5]  
Bekessy A., 1972, Studia Scientiarum Mathematicarum Hungarica, V7, P343
[6]   ASYMPTOTIC NUMBER OF LABELED GRAPHS WITH GIVEN DEGREE SEQUENCES [J].
BENDER, EA ;
CANFIELD, ER .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1978, 24 (03) :296-307
[7]  
Bollobás B, 2000, J GRAPH THEOR, V34, P42, DOI 10.1002/(SICI)1097-0118(200005)34:1<42::AID-JGT5>3.0.CO
[8]  
2-H
[9]  
Bollobas B, 2001, RANDOM GRAPHS, V73
[10]  
Bollobas B., 1984, GRAPH THEORY COMBINA, P35