Numerical Solution of Hyperbolic Heat Conduction Equation

被引:19
作者
Ciegis, R. [1 ]
机构
[1] Vilnius Gediminas Tech Univ, LT-10223 Vilnius, Lithuania
关键词
hyperbolic heat conduction equation; finite difference schemes; stability; weak-solution;
D O I
10.3846/1392-6292.2009.14.11-24
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Hyperbolic heat conduction problem is solved numerically. The explicit and implicit Euler schemes axe constructed and investigated. It is shown that the implicit Euler scheme can be used to solve efficiently paxabolic and hyperbolic heat conduction problems. This scheme is unconditionally stable for both problems. For many integration methods strong numerical oscillations are present, when the initial and boundary conditions axe discontinuous for the hyperbolic problem. In order to regularize the implicit Euler scheme, a simple linear relation between time and space steps is proposed, which automatically introduces sufficient amount of numerical viscosity. Results of numerical experiments are presented.
引用
收藏
页码:11 / 24
页数:14
相关论文
共 18 条
[1]  
[Anonymous], TEXTS APPL MATH
[2]  
Ciegis R., 2007, Computational Methods in Applied Mathematics, V7, P118
[3]   Numerical simulation of the heat conduction in electrical cables [J].
Ciegis, R. ;
Ilgevicius, A. ;
Liess, H. ;
Meilunas, M. ;
Suboc, O. .
MATHEMATICAL MODELLING AND ANALYSIS, 2007, 12 (04) :425-439
[4]   Numerical analysis of the hyperbolic two-temperature model [J].
Ciegis, R. ;
Dement'ev, A. .
LITHUANIAN MATHEMATICAL JOURNAL, 2008, 48 (01) :46-60
[5]  
Ciegis R, 2000, ANN UNIV FERRARA, V46, P291
[6]  
CIEGIS R, 1999, PROGR IND MATH ECMI9, P206
[7]   ON THE NUMERICAL-SOLUTION OF HYPERBOLIC HEAT-CONDUCTION [J].
GLASS, DE ;
OZISIK, MN ;
MCRAE, DS ;
VICK, B .
NUMERICAL HEAT TRANSFER, 1985, 8 (04) :497-504
[8]  
HAITIAN Y, 2003, HEAT MASS TRANSFER, V39, P571
[9]  
LeVeque RJ., 1991, Numerical Methods for Conservation Laws
[10]  
Manzari MT, 1999, COMMUN NUMER METH EN, V15, P853, DOI 10.1002/(SICI)1099-0887(199912)15:12<853::AID-CNM293>3.0.CO