Corotating interaction regions and the 27 day variation of galactic cosmic rays intensity at 1 AU during the cycle 23/24 solar minimum

被引:39
作者
Guo, X. [1 ]
Florinski, V. [1 ,2 ]
机构
[1] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35899 USA
[2] Univ Alabama, Dept Space Sci, Huntsville, AL 35899 USA
基金
美国国家科学基金会;
关键词
corotating interaction region; galactic cosmic ray; solar minimum; MHD simulation; cosmic ray transport; MERGED INTERACTION REGIONS; WIND TERMINATION SHOCK; MAGNETIC-FIELDS; OUTER HELIOSPHERE; VOYAGER-2; OBSERVATIONS; CHARGED-PARTICLES; STREAM INTERFACES; CURRENT SHEET; DRIFT MODEL; MODULATION;
D O I
10.1002/2013JA019546
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We investigate the formation and evolution of corotating interaction regions (CIRs) in the solar wind and their effects on galactic cosmic rays (GCR) during the recent solar cycle 23/24 solar minimum. The output from a three-dimensional MHD model serves as background for kinetic time-dependent simulations of GCR transport based on the Parker equation. The results show that the CIR forward/reverse shock pairs or compression/rarefaction regions play important roles in the transport of GCR particles and directly control the observed 27 day periodic intensity variations. We find that stream interfaces (SIs) in CIRs and the heliospheric current sheet (HCS) are both closely associated with the GCR depression onset, in agreement with the observations at 1 AU. The HCS is more important when its tilt angle becomes small during the declining phase of the solar minimum, while the passages of SIs control the onset of GCR depressions for larger HCS tilt angles. The mechanism of GCR intensity variation near 1 AU can be explained through an interplay between the effects of particle drift and diffusion. The simulated plasma background and GCR intensity are compared with the observations from spacecraft and a neutron monitor on the ground, to find good qualitative agreement. Evidently, CIRs had a substantial modulational effect on GCR during the recent solar minimum.
引用
收藏
页码:2411 / 2429
页数:19
相关论文
共 78 条
[1]   Detection of the Characteristic Pion-Decay Signature in Supernova Remnants [J].
Ackermann, M. ;
Ajello, M. ;
Allafort, A. ;
Baldini, L. ;
Ballet, J. ;
Barbiellini, G. ;
Baring, M. G. ;
Bastieri, D. ;
Bechtol, K. ;
Bellazzini, R. ;
Blandford, R. D. ;
Bloom, E. D. ;
Bonamente, E. ;
Borgland, A. W. ;
Bottacini, E. ;
Brandt, T. J. ;
Bregeon, J. ;
Brigida, M. ;
Bruel, P. ;
Buehler, R. ;
Busetto, G. ;
Buson, S. ;
Caliandro, G. A. ;
Cameron, R. A. ;
Caraveo, P. A. ;
Casandjian, J. M. ;
Cecchi, C. ;
Celik, O. ;
Charles, E. ;
Chaty, S. ;
Chaves, R. C. G. ;
Chekhtman, A. ;
Cheung, C. C. ;
Chiang, J. ;
Chiaro, G. ;
Cillis, A. N. ;
Ciprini, S. ;
Claus, R. ;
Cohen-Tanugi, J. ;
Cominsky, L. R. ;
Conrad, J. ;
Corbel, S. ;
Cutini, S. ;
D'Ammando, F. ;
de Angelis, A. ;
de Palma, F. ;
Dermer, C. D. ;
do Couto e Silva, E. ;
Drell, P. S. ;
Drlica-Wagner, A. .
SCIENCE, 2013, 339 (6121) :807-811
[2]   TIME DEPENDENCE OF THE PROTON FLUX MEASURED BY PAMELA DURING THE 2006 JULY-2009 DECEMBER SOLAR MINIMUM [J].
Adriani, O. ;
Barbarino, G. C. ;
Bazilevskaya, G. A. ;
Bellotti, R. ;
Boezio, M. ;
Bogomolov, E. A. ;
Bongi, M. ;
Bonvicini, V. ;
Borisov, S. ;
Bottai, S. ;
Bruno, A. ;
Cafagna, F. ;
Campana, D. ;
Carbone, R. ;
Carlson, P. ;
Casolino, M. ;
Castellini, G. ;
De Pascale, M. P. ;
De Santis, C. ;
De Simone, N. ;
Di Felice, V. ;
Formato, V. ;
Galper, A. M. ;
Grishantseva, L. ;
Karelin, A. V. ;
Koldashov, S. V. ;
Koldobskiy, S. ;
Krutkov, S. Y. ;
Kvashnin, A. N. ;
Leonov, A. ;
Malakhov, V. ;
Marcelli, L. ;
Mayorov, A. G. ;
Menn, W. ;
Mikhailov, V. V. ;
Mocchiutti, E. ;
Monaco, A. ;
Mori, N. ;
Nikonov, N. ;
Osteria, G. ;
Palma, F. ;
Papini, P. ;
Pearce, M. ;
Picozza, P. ;
Pizzolotto, C. ;
Ricci, M. ;
Ricciarini, S. B. ;
Rossetto, L. ;
Sarkar, R. ;
Simon, M. .
ASTROPHYSICAL JOURNAL, 2013, 765 (02)
[3]   On the Relationship of the 27-day Variations of the Solar Wind Velocity and Galactic Cosmic Ray Intensity in Minimum Epoch of Solar Activity [J].
Alania, M. V. ;
Modzelewska, R. ;
Wawrzynczak, A. .
SOLAR PHYSICS, 2011, 270 (02) :629-641
[4]   Heliospheric modulation strength: Effective neutron monitor energy [J].
Alanko, K ;
Usoskin, IG ;
Mursula, K ;
Kovaltsov, GA .
HELIOSPHERE AT SOLAR MAXIMUM, 2003, 32 (04) :615-620
[5]   MAGNETIC FIELDS AND STRUCTURE OF SOLAR CORONA .I. METHODS OF CALCULATING CORONAL FIELDS [J].
ALTSCHULER, MD ;
NEWKIRK, G .
SOLAR PHYSICS, 1969, 9 (01) :131-+
[6]   Galactic cosmic-ray modulation using a solar minimum MHD heliosphere: A stochastic particle approach [J].
Ball, B ;
Zhang, M ;
Rassoul, H ;
Linde, T .
ASTROPHYSICAL JOURNAL, 2005, 634 (02) :1116-1125
[7]   LARGE-AMPLITUDE ALFVEN WAVES IN INTERPLANETARY MEDIUM .2. [J].
BELCHER, JW ;
DAVIS, L .
JOURNAL OF GEOPHYSICAL RESEARCH, 1971, 76 (16) :3534-+
[8]   Dominant two-dimensional solar wind turbulence with implications for cosmic ray transport [J].
Bieber, JW ;
Wanner, W ;
Matthaeus, WH .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1996, 101 (A2) :2511-2522
[9]   SOLAR ROTATION EFFECTS ON THE HELIOSHEATH FLOW NEAR SOLAR MINIMA [J].
Borovikov, Sergey N. ;
Pogorelov, Nikolai V. ;
Ebert, Robert W. .
ASTROPHYSICAL JOURNAL, 2012, 750 (01)
[10]   Turbulence transport throughout the heliosphere [J].
Breech, B. ;
Matthaeus, W. H. ;
Minnie, J. ;
Bieber, J. W. ;
Oughton, S. ;
Smith, C. W. ;
Isenberg, P. A. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2008, 113 (A8)