The Problem of the Centre for Cubic Systems with Two Parallel Invariant Straight Lines and One Invariant Conic

被引:4
作者
Cozma, Dumitru [1 ]
机构
[1] Tiraspol State Univ, Dept Math, MD-2069 Kishinev, Moldova
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2009年 / 16卷 / 02期
关键词
Cubic differential systems; center-focus problem; invariant algebraic curves; integrability; DARBOUX INTEGRABILITY;
D O I
10.1007/s00030-008-7044-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For cubic differential systems with two parallel invariant straight lines and at least one invariant conic it is proved that a singular point with pure imaginary eigenvalues (a weak focus) is a centre if and only if the first three Liapunov quantities L (j) , j = 1, 2, 3 vanish.
引用
收藏
页码:213 / 234
页数:22
相关论文
共 26 条
  • [1] Amel'kin V.V., 1982, NONLINEAR OSCILLATIO
  • [2] Bautin N. N., 1954, Amer. Math. Soc. Transl., V100, P397
  • [3] BONDAR YL, 2004, B ACAD SCI MOLDOVA M, V46, P71
  • [4] Darboux integrability and the inverse integrating factor
    Chavarriga, J
    Giacomini, H
    Giné, J
    Llibre, J
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 194 (01) : 116 - 139
  • [5] On the integrability of two-dimensional flows
    Chavarriga, J
    Giacomini, H
    Giné, J
    Llibre, J
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 157 (01) : 163 - 182
  • [6] CHAVARRIGA J, 1998, DIFF EQUAT, V6, P425
  • [7] Cherkas LA., 1997, DIFFER EQUAT DYN SYS, V5, P299
  • [8] Darboux integrability and invariant algebraic curves for planar polynomial systems
    Christopher, C
    Llibre, J
    Pantazi, C
    Zhang, X
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (10): : 2457 - 2476
  • [9] Cozma D, 1995, NODEA-NONLINEAR DIFF, V2, P21
  • [10] Cozma D., 2005, Qual. Theory Dyn. Syst, V6, P45