Isoscattering Microwave Networks - The Role of the Boundary Conditions

被引:0
作者
Lawniczak, M. [1 ]
Bauch, S. [1 ]
Sawicki, A. [2 ,3 ]
Kus, M. [2 ]
Sirko, L. [1 ]
机构
[1] Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland
[2] Polish Acad Sci, Ctr Theoret Phys, PL-02668 Warsaw, Poland
[3] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
关键词
TIME-REVERSAL SYMMETRY; NON-NEWTONIAN ORBITS; HYDROGEN-ATOMS; QUANTUM GRAPHS; RESONANCE ZONE; RYDBERG ATOMS; ONE HEAR; BILLIARDS; SHAPE; STATISTICS;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The recent paper by Hul et al. (Phys. Rev. Lett. 109, 040402 (2012), see Ref. [7]) addresses an important mathematical problem whether scattering properties of wave systems are uniquely connected to their shapes? The analysis of the isoscattering microwave networks presented in this paper indicates a negative answer to this question. In this paper the sensitivity of the spectral properties of the networks to boundary conditions is tested. We show that the choice of the proper boundary conditions is extremely important in the construction of the isoscattering networks.
引用
收藏
页码:1078 / 1081
页数:4
相关论文
共 44 条
[1]   GAUSSIAN ORTHOGONAL ENSEMBLE STATISTICS IN A MICROWAVE STADIUM BILLIARD WITH CHAOTIC DYNAMICS - PORTER-THOMAS DISTRIBUTION AND ALGEBRAIC DECAY OF TIME CORRELATIONS [J].
ALT, H ;
GRAF, HD ;
HARNEY, HL ;
HOFFERBERT, R ;
LENGELER, H ;
RICHTER, A ;
SCHARDT, P ;
WEIDENMULLER, HA .
PHYSICAL REVIEW LETTERS, 1995, 74 (01) :62-65
[2]   Scattering from isospectral quantum graphs [J].
Band, R. ;
Sawicki, A. ;
Smilansky, U. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (41)
[3]   Signature of non-Newtonian orbits in ray-splitting cavities [J].
Bauch, S ;
Bledowski, A ;
Sirko, L ;
Koch, PM ;
Blumel, R .
PHYSICAL REVIEW E, 1998, 57 (01) :304-315
[4]   ELECTRIC-FIELD DEPENDENCE OF E1 TRANSITIONS BETWEEN HIGHLY EXCITED HYDROGEN STARK SUBLEVELS [J].
BELLERMANN, M ;
BERGEMAN, T ;
HAFFMANS, A ;
KOCH, PM ;
SIRKO, L .
PHYSICAL REVIEW A, 1992, 46 (09) :5836-5844
[5]   DYNAMIC LOCALIZATION IN THE MICROWAVE INTERACTION OF RYDBERG ATOMS - THE INFLUENCE OF NOISE [J].
BLUMEL, R ;
BUCHLEITNER, A ;
GRAHAM, R ;
SIRKO, L ;
SMILANSKY, U ;
WALTHER, H .
PHYSICAL REVIEW A, 1991, 44 (07) :4521-4540
[6]  
Blumel R., FDN PHYS, V31
[7]   Symmetries of quantum graphs and the inverse scattering problem [J].
Boman, J ;
Kurasov, P .
ADVANCES IN APPLIED MATHEMATICS, 2005, 35 (01) :58-70
[8]   Experimental test of a trace formula for a chaotic three-dimensional microwave cavity -: art. no. 064101 [J].
Dembowski, C ;
Dietz, B ;
Gräf, HD ;
Heine, A ;
Papenbrock, T ;
Richter, A ;
Richter, C .
PHYSICAL REVIEW LETTERS, 2002, 89 (06)
[9]   STATISTICAL PROPERTIES OF THE EIGENFREQUENCY DISTRIBUTION OF 3-DIMENSIONAL MICROWAVE CAVITIES [J].
DEUS, S ;
KOCH, PM ;
SIRKO, L .
PHYSICAL REVIEW E, 1995, 52 (01) :1146-1155
[10]   Synthesis of branched 'nanotrees' by controlled seeding of multiple branching events [J].
Dick, KA ;
Deppert, K ;
Larsson, MW ;
Mårtensson, T ;
Seifert, W ;
Wallenberg, LR ;
Samuelson, L .
NATURE MATERIALS, 2004, 3 (06) :380-384