Nonlinearity and computation: implementing logic as a nonlinear dynamical system

被引:25
作者
Prusha, BS [1 ]
Lindner, JF [1 ]
机构
[1] Coll Wooster, Dept Phys, Wooster, OH 44691 USA
关键词
nonlinear dynamics; computation;
D O I
10.1016/S0375-9601(99)00665-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recently, Sinha and Ditto [Phys. Rev. Lett. 81 (1998) 2156] demonstrated the computational possibilities of an array of coupled maps. We generalize this nonlinear dynamical system to improve its computational usefulness. We then consider a second nonlinear system, a parameterized map, and use it to illustrate why logic requires nonlinearity. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:105 / 111
页数:7
相关论文
共 3 条
[1]  
[Anonymous], 1982, WHAT IS LIFE
[2]   CONSERVATIVE LOGIC [J].
FREDKIN, E ;
TOFFOLI, T .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1982, 21 (3-4) :219-253
[3]   Dynamics based computation [J].
Sinha, S ;
Ditto, WL .
PHYSICAL REVIEW LETTERS, 1998, 81 (10) :2156-2159