AN INTEGRAL IDENTITY WITH APPLICATIONS IN ORTHOGONAL POLYNOMIALS

被引:5
作者
Xu, Yuan [1 ]
机构
[1] Univ Oregon, Dept Math, Eugene, OR 97403 USA
关键词
Gegenbauer polynomials; orthogonal polynomials; several variables; reproducing kernel; SUMMABILITY; SERIES; WEIGHT;
D O I
10.1090/proc/12635
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For lambda = (lambda(1), ..., lambda(d)) with lambda(i) > 0, it is proved that Pi(d)(i=1) 1/(1 - rx(i))(lambda i) = Gamma(vertical bar lambda vertical bar)/Pi(d)(i-1) Gamma(lambda(i)) integral(tau d) 1/(1 - r < x, u >)(vertical bar lambda vertical bar) Pi(d)(i=1) u(i)(lambda i-1) du, where tau(d) is the simplex in homogeneous coordinates of R-d, from which a new integral relation for Gegenbauer polynomials of different indexes is deduced. The latter result is used to derive closed formulas for reproducing kernels of orthogonal polynomials on the unit cube and on the unit ball.
引用
收藏
页码:5253 / 5263
页数:11
相关论文
共 13 条
[1]  
Askey Richard, 1975, ORTHOGONAL POLYNOMIA
[2]  
Atkinson Kendall E., 1989, INTRO NUMERICAL ANAL
[3]   Cesaro Means of Orthogonal Expansions in Several Variables [J].
Dai, Feng ;
Xu, Yuan .
CONSTRUCTIVE APPROXIMATION, 2009, 29 (01) :129-155
[4]  
Dunkl C.F., 2001, ENCYCL MATH, V81
[5]   POSITIVE SUMS OF CLASSICAL ORTHOGONAL POLYNOMIALS [J].
GASPER, G .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1977, 8 (03) :423-447
[6]   ADDITION FORMULA FOR JACOBI POLYNOMIALS AND SPHERICAL HARMONICS [J].
KOORNWINDER, T .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1973, 25 (02) :236-246
[7]  
Koornwinder Tom, 1972, LIE ALGEBRAS APPL CO
[8]   Summability of product Jacobi expansions [J].
Li, ZK ;
Xu, Y .
JOURNAL OF APPROXIMATION THEORY, 2000, 104 (02) :287-301
[9]  
Srivastava H. M., 1985, ELLIS HORWOOD SERIES
[10]  
Szego Gabor, 1975, ORTHOGONAL POLYNOMIA, VXXIII