FADS: A fuzzy anomaly detection system

被引:0
作者
Li, Dan [1 ]
Wang, Kefei
Deogun, Jitender S.
机构
[1] No Arizona Univ, Dept Comp Sci, Flagstaff, AZ 86011 USA
[2] Univ Nebraska, Dept Comp Sci & Engn, Lincoln, NE 68588 USA
来源
ROUGH SETS AND KNOWLEDGE TECHNOLOGY, PROCEEDINGS | 2006年 / 4062卷
关键词
fuzzy theory; anomaly detection; data mining;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a novel anomaly detection framework which integrates soft computing techniques to eliminate sharp boundary between normal and anomalous behavior. The proposed method also improves data pre-processing step by identifying important features for intrusion detection. Furthermore, we develop a learning algorithm to find classifiers for imbalanced training data to avoid some assumptions made in most learning algorithms that are not necessarily sound. Preliminary experimental results indicate that our approach is very effective in anomaly detection.
引用
收藏
页码:792 / 798
页数:7
相关论文
共 10 条
  • [1] [Anonymous], P IEEE WORKSH INF AS
  • [2] [Anonymous], 2002, P 3 INT C INT TECHN
  • [3] Bace Rebecca Gurley, 2000, Intrusion Detection
  • [4] Eskin E., 2000, P 17 INT C MACH LEAR, P255, DOI DOI 10.1109/ICCSA.2008.70
  • [5] Lippmann R. P., 2000, P DARPA INF SURV C E
  • [6] Luo JX, 2000, INT J INTELL SYST, V15, P687, DOI 10.1002/1098-111X(200008)15:8<687::AID-INT1>3.0.CO
  • [7] 2-X
  • [8] PORTNOY L, 2001, ACM WORKSH DAT MIN A
  • [9] Identifying important features for intrusion detection using support vector machines and neural networks
    Sung, AH
    Mukkamala, S
    [J]. 2003 SYMPOSIUM ON APPLICATIONS AND THE INTERNET, PROCEEDINGS, 2003, : 209 - 216
  • [10] [No title captured]