Influence of the size and shape of silica nanoparticles on the properties and degradation of a PBI-based high temperature polymer electrolyte membrane

被引:50
作者
Ossiander, T. [1 ]
Heinzl, C. [1 ]
Gleich, S. [1 ]
Schoenberger, F. [2 ]
Voelk, P. [2 ]
Welsch, M. [2 ]
Scheu, C. [1 ]
机构
[1] Univ Munich, Dept Chem, D-81377 Munich, Germany
[2] Elcomax GmbH, D-81737 Munich, Germany
关键词
Polybenzimidazol; Fuel cell; Composite membrane; Durability; Silica nanoparticles; COMPOSITE MEMBRANES; NANOCOMPOSITE MEMBRANES; POLYBENZIMIDAZOLE; CONDUCTIVITY; REDUCTION;
D O I
10.1016/j.memsci.2013.12.004
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The life Lime stability of membrane material is one of the major parameters regarding reliability of high temperature polymer electrolyte membrane fuel cells. Present work has improved fuel cell durability and chemical stability by incorporating cross-linked silica particles in phosphoric acid doped poly(2,2`-m-phenylene-5,5'-bibenzimidazole) membranes. Three different silica particle contents were generated in membranes by in-situ sol-gel reaction from the precursor tetraethoxy silane and cross-linked to the polymer chains by using (3-glycidoxypropyl)-methyldiethoxysilane. The size, shape and distribution of the silica nanoparticles were examined by transmission electron microscopy. The amorphous characteristics and the chemical composition of the silica particles were investigated using X-ray diffraction, electron diffraction and energy dispersive X-ray spectroscopy. Detailed statistical analysis showed that by increasing the tetraethoxy silane content, the particle size was reduced while the amount of particles was increased. Ex-situ membrane characterization and in-situ membrane electrode assembly testing revealed a high influence of the silica content on the mechanical stability and start-stop-cycling behavior. The improved lifetime durability of the organic-inorganic composite membrane was proven in comparison to the pure polybenzimidazole membrane in membrane electrode assemblies over 1300 h under constant fuel cell operation in reformate. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:12 / 19
页数:8
相关论文
共 43 条
[1]   New preparation methods for composite membranes for medium temperature fuel cells based on precursor solutions of insoluble inorganic compounds [J].
Alberti, G ;
Casciola, M ;
Pica, M ;
Tarpanelli, T ;
Sganappa, M .
FUEL CELLS, 2005, 5 (03) :366-374
[2]   Composite membranes for medium-temperature PEM fuel cells [J].
Alberti, G ;
Casciola, M .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2003, 33 :129-154
[3]   Epoxy-Amine Based Nanocomposites Reinforced by Silica Nanoparticles. Relationships between Morphologic Aspects, Cure Kinetics, and Thermal Properties [J].
Alzina, Camille ;
Sbirrazzuoli, Nicolas ;
Mija, Alice .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (46) :22789-22795
[4]   Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest [J].
Antonio Asensio, Juan ;
Sanchez, Eduardo M. ;
Gomez-Romero, Pedro .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (08) :3210-3239
[5]   Scientific aspects of polymer electrolyte fuel cell durability and degradation [J].
Borup, Rod ;
Meyers, Jeremy ;
Pivovar, Bryan ;
Kim, Yu Seung ;
Mukundan, Rangachary ;
Garland, Nancy ;
Myers, Deborah ;
Wilson, Mahlon ;
Garzon, Fernando ;
Wood, David ;
Zelenay, Piotr ;
More, Karren ;
Stroh, Ken ;
Zawodzinski, Tom ;
Boncella, James ;
McGrath, James E. ;
Inaba, Minoru ;
Miyatake, Kenji ;
Hori, Michio ;
Ota, Kenichiro ;
Ogumi, Zempachi ;
Miyata, Seizo ;
Nishikata, Atsushi ;
Siroma, Zyun ;
Uchimoto, Yoshiharu ;
Yasuda, Kazuaki ;
Kimijima, Ken-ichi ;
Iwashita, Norio .
CHEMICAL REVIEWS, 2007, 107 (10) :3904-3951
[6]   Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges [J].
Bose, Saswata ;
Kuila, Tapas ;
Thi Xuan Lien Nguyen ;
Kim, Nam Hoon ;
Lau, Kin-tak ;
Lee, Joong Hee .
PROGRESS IN POLYMER SCIENCE, 2011, 36 (06) :813-843
[7]   Polybenzimidazole/zwitterion-coated silica nanoparticle hybrid proton conducting membranes for anhydrous proton exchange membrane application [J].
Chu, Fuqiang ;
Lin, Bencai ;
Qiu, Bo ;
Si, Zhihong ;
Qiu, Lihua ;
Gu, Zongzong ;
Ding, Jianning ;
Yan, Feng ;
Lu, Jianmei .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (35) :18411-18417
[8]   Synthesis and properties of fluorine-containing polybenzimidazole/silica nanocomposite membranes for proton exchange membrane fuel cells [J].
Chuang, Shih-Wei ;
Hsu, Steve Lien-Chung ;
Liu, Yen-Hsin .
JOURNAL OF MEMBRANE SCIENCE, 2007, 305 (1-2) :353-363
[9]   Development of hybrid polymer electrolyte membranes based on the semi-interpenetrating network concept [J].
Colicchio, I. ;
Keul, H. ;
Sanders, D. ;
Simon, U. ;
Weirich, T. E. ;
Moeller, M. .
FUEL CELLS, 2006, 6 (3-4) :225-236
[10]   Polybenzimidazole/silica nanocomposites: Organic-inorganic hybrid membranes for PEM fuel cell [J].
Ghosh, Sandip ;
Maity, Sudhangshu ;
Jana, Tushar .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (38) :14897-14906