Iterative Solution of Operator Lyapunov Equations arising in Heat Transfer

被引:0
作者
Reis, Timo [1 ]
Wollner, Winnifried [1 ]
机构
[1] Univ Hamburg, Dept Math, D-20146 Hamburg, Germany
来源
2013 EUROPEAN CONTROL CONFERENCE (ECC) | 2013年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider an iterative method for the numerical solution of Lyapunov equations of infinite-dimensional control systems governed by an heat equation. Inspired by the 'alternating direction implicit (ADI)' iteration, which has been successfully applied to the solution of matrix Lyapunov equations, we present a method to determine approximations of the Gramian operator corresponding to the heat equation system. This method provides approximations of finite rank and is shown to be convergent in the nuclear norm.
引用
收藏
页码:41 / 46
页数:6
相关论文
共 27 条
[1]  
Adams R. A., 1978, SOBOLEV SPACES
[2]  
Ainsworth M., 2000, PURE APPL MATH NEW Y, DOI DOI 10.1002/9781118032824
[3]  
[Anonymous], 1972, METHODS MODERN MATH, DOI DOI 10.1016/B978-0-12-585001-8.50008-8
[4]  
Antoulas. A. C., 2005, Adv. Des. Control
[5]  
Aubin J.P., 1979, APPL FUNCTIONAL ANAL
[6]   deal. II - A general-purpose object-oriented finite element library [J].
Bangerth, W. ;
Hartmann, R. ;
Kanschat, G. .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2007, 33 (04)
[7]  
Bangerth W., DIFFERENTIAL EQUATIO
[8]   ALGORITHM - SOLUTION OF MATRIX EQUATION AX+XB = C [J].
BARTELS, RH ;
STEWART, GW .
COMMUNICATIONS OF THE ACM, 1972, 15 (09) :820-&
[9]   Well-posedness of boundary control systems [J].
Cheng, A ;
Morris, K .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (04) :1244-1265
[10]  
Curtain RF, 2012, An Introduction to Infinite-dimensional Linear Systems Theory, V21