Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options

被引:131
|
作者
Popp, Alexander [1 ]
Rose, Steven K. [2 ]
Calvin, Katherine [3 ]
Van Vuuren, Detlef P. [4 ,5 ]
Dietrich, Jan Phillip [1 ]
Wise, Marshall [3 ]
Stehfest, Elke [4 ]
Humpenoeder, Florian [1 ]
Kyle, Page [3 ]
Van Vliet, Jasper [4 ]
Bauer, Nico [1 ]
Lotze-Campen, Hermann [1 ]
Klein, David [1 ]
Kriegler, Elmar [1 ]
机构
[1] Potsdam Inst Climate Impact Res PIK, D-14412 Potsdam, Germany
[2] EPRI, Energy & Environm Anal Res Grp, Washington, DC 20036 USA
[3] Univ Maryland, Joint Global Change Res Inst, Pacific NW Natl Lab, College Pk, MD 20740 USA
[4] PBL Netherlands Environm Assessment Agcy, Bilthoven, Netherlands
[5] Univ Utrecht, Dept Geosci, Utrecht, Netherlands
关键词
BIO-ENERGY; MISCANTHUS; EMISSIONS;
D O I
10.1007/s10584-013-0926-x
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this article, we evaluate and compare results from three integrated assessment models (GCAM, IMAGE, and ReMIND/MAgPIE) regarding the drivers and impacts of bioenergy production on the global land system. The considered model frameworks employ linked energy, economy, climate and land use modules. By the help of these linkages the direct competition of bioenergy with other energy technology options for greenhouse gas (GHG) mitigation, based on economic costs and GHG emissions from bioenergy production, has been taken into account. Our results indicate that dedicated bioenergy crops and biomass residues form a potentially important and cost-effective input into the energy system. At the same time, however, the results differ strongly in terms of deployment rates, feedstock composition and land-use and greenhouse gas implications. The current paper adds to earlier work by specific looking into model differences with respect to the land-use component that could contribute to the noted differences in results, including land cover allocation, land use constraints, energy crop yields, and non-bioenergy land mitigation options modeled. In scenarios without climate change mitigation, bioenergy cropland represents 10-18 % of total cropland by 2100 across the different models, and boosts cropland expansion at the expense of carbon richer ecosystems. Therefore, associated emissions from land-use change and agricultural intensification as a result of bio-energy use range from 14 and 113 Gt CO2-eq cumulatively through 2100. Under climate policy, bioenergy cropland increases to 24-36 % of total cropland by 2100.
引用
收藏
页码:495 / 509
页数:15
相关论文
共 42 条
  • [1] Land-use protection for climate change mitigation
    Popp, Alexander
    Humpenoeder, Florian
    Weindl, Isabelle
    Bodirsky, Benjamin Leon
    Bonsch, Markus
    Lotze-Campen, Hermann
    Mueller, Christoph
    Biewald, Anne
    Rolinski, Susanne
    Stevanovic, Miodrag
    Dietrich, Jan Philipp
    NATURE CLIMATE CHANGE, 2014, 4 (12) : 1095 - 1098
  • [2] Exploring SSP land-use dynamics using the IMAGE model: Regional and gridded scenarios of land-use change and land-based climate change mitigation
    Doelman, Jonathan C.
    Stehfest, Elke
    Tabeau, Andrzej
    van Meijl, Hans
    Lassaletta, Luis
    Gernaat, David E. H. J.
    Hermans, Kathleen
    Harmsen, Mathijs
    Daioglou, Vassilis
    Biemans, Hester
    van der Sluis, Sietske
    van Vuuren, Detlef P.
    GLOBAL ENVIRONMENTAL CHANGE-HUMAN AND POLICY DIMENSIONS, 2018, 48 : 119 - 135
  • [3] Land-Use and Carbon Cycle Responses to Moderate Climate Change: Implications for Land-Based Mitigation?
    Humpenoeder, Florian
    Popp, Alexander
    Stevanovic, Miodrag
    Mueller, Christoph
    Bodirsky, Benjamin Leon
    Bonsch, Markus
    Dietrich, Jan Philipp
    Lotze-Campen, Hermann
    Weindl, Isabelle
    Biewald, Anne
    Rolinski, Susanne
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2015, 49 (11) : 6731 - 6739
  • [4] A cobweb model of land-use competition between food and bioenergy crops
    Lundberg, Liv
    Jonson, Emma
    Lindgren, Kristian
    Bryngelsson, David
    Verendel, Vilhelm
    JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2015, 53 : 1 - 14
  • [5] Modelling emission and land-use impacts of altered bioenergy use in the future energy system
    Jastad, Eirik Ogner
    Bolkesjo, Torjus Folsland
    ENERGY, 2023, 265
  • [6] GHG emissions and other environmental impacts of indirect land use change mitigation
    Gerssen-Gondelach, Sarah J. .
    Wicke, Birka
    Faaij, Andre P. C.
    GLOBAL CHANGE BIOLOGY BIOENERGY, 2017, 9 (04): : 725 - 742
  • [7] Climate mitigation comparison of woody biomass systems with the inclusion of land-use in the reference fossil system
    Haus, S.
    Gustavsson, L.
    Sathre, R.
    BIOMASS & BIOENERGY, 2014, 65 : 136 - 144
  • [8] Carbon sequestration versus bioenergy: A case study from South India exploring the relative land-use efficiency of two options for climate change mitigation
    Rootzen, J. M.
    Berndes, G.
    Ravindranath, N. H.
    Somashekar, H. I.
    Murthy, I. K.
    Sudha, P.
    Ostwald, M.
    BIOMASS & BIOENERGY, 2010, 34 (01) : 116 - 123
  • [9] Bioenergy production and Skylark (Alauda arvensis) population abundance - a modelling approach for the analysis of land-use change impacts and conservation options
    Engel, Jan
    Huth, Andreas
    Frank, Karin
    GLOBAL CHANGE BIOLOGY BIOENERGY, 2012, 4 (06): : 713 - 727
  • [10] Unprecedented rates of land-use transformation in modelled climate change mitigation pathways
    Turner, P. A.
    Field, C. B.
    Lobell, D. B.
    Sanchez, D. L.
    Mach, K. J.
    NATURE SUSTAINABILITY, 2018, 1 (05): : 240 - 245