Eigenvalue problem of the Schrodinger equation via the finite-difference time-domain method

被引:14
|
作者
Ren, GB [1 ]
Rorison, JM [1 ]
机构
[1] Univ Bristol, Dept Elect & Elect Engn, Bristol BS8 1TR, Avon, England
来源
PHYSICAL REVIEW E | 2004年 / 69卷 / 03期
关键词
D O I
10.1103/PhysRevE.69.036705
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a very efficient scheme to calculate the eigenvalue problem of the time-independent Schrodinger equation. The eigenvalue problem can be solved via an initial-value procedure of the time-dependent Schrodinger equation. First, the time evolution of the wave function is calculated by the finite-difference time-domain method. Then the eigenenergies of the electron system can be obtained through a fast Fourier transformation along the time axis of the wave function after some point. The computing effort for this scheme is roughly proportional to the total grid points involved in the structure and it is suitable for large scale quantum systems. We have applied this approach to the three-dimensional GaN quantum dot system involving one million grid points. It takes only 7 h to calculate the confined energies and the wave functions on a standard 2-GHz Pentium 4 computer. The proposed approach can be implemented in a parallel computer system to study more complex systems.
引用
收藏
页码:036705 / 1
页数:4
相关论文
共 50 条
  • [21] Geometrical optics and the finite-difference time-domain method
    Arnold, J. M.
    2012 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2012, : 1054 - 1056
  • [22] Implicit nonstaggered finite-difference time-domain method
    Wang, SM
    Lee, R
    Teixeira, FL
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2005, 45 (04) : 317 - 319
  • [23] Pentadiagonal alternating-direction-implicit finite-difference time-domain method for two-dimensional Schrodinger equation
    Tay, Wei Choon
    Tan, Eng Leong
    COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (07) : 1886 - 1892
  • [24] Finite-difference time-domain methods
    Teixeira, F. L.
    Sarris, C.
    Zhang, Y.
    Na, D. -Y.
    Berenger, J. -P.
    Su, Y.
    Okoniewski, M.
    Chew, W. C.
    Backman, V.
    Simpson, J. J.
    NATURE REVIEWS METHODS PRIMERS, 2023, 3 (01):
  • [25] Finite-difference time-domain methods
    F. L. Teixeira
    C. Sarris
    Y. Zhang
    D.-Y. Na
    J.-P. Berenger
    Y. Su
    M. Okoniewski
    W. C. Chew
    V. Backman
    J. J. Simpson
    Nature Reviews Methods Primers, 3
  • [26] A generalized finite-difference time-domain scheme for solving nonlinear Schrodinger equations
    Moxley, Frederick Ira, III
    Chuss, David T.
    Dai, Weizhong
    COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (08) : 1834 - 1841
  • [27] ANALYSIS OF SUPERCONDUCTIVE INTERCONNECTS BY THE FINITE-DIFFERENCE TIME-DOMAIN METHOD
    WANG, BZ
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 1994, 7 (18) : 837 - 840
  • [28] Multi-time-step finite-difference time-domain method
    Zheng, Yang-Ming
    Chu, Qing-Xin
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2004, 32 (09): : 1504 - 1506
  • [29] A novel high accuracy finite-difference time-domain method
    Sekido, Harune
    Umeda, Takayuki
    EARTH PLANETS AND SPACE, 2024, 76 (01):
  • [30] Unconditionally stable implicit finite-difference time-domain method
    Gao, Wen-Jun
    Lu, Shan-Wei
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2002, 30 (06): : 900 - 902