Micromachined Accelerometers with Sub-μg/√Hz Noise Floor: A Review

被引:69
作者
Wang, Chen [1 ,2 ,3 ]
Chen, Fang [4 ]
Wang, Yuan [5 ,6 ]
Sadeghpour, Sina [3 ]
Wang, Chenxi [3 ]
Baijot, Mathieu [3 ]
Esteves, Rui [3 ]
Zhao, Chun [5 ,6 ]
Bai, Jian [1 ]
Liu, Huafeng [5 ,6 ]
Kraft, Michael [3 ]
机构
[1] Zhejiang Univ, Coll Opt Sci & Engn, Hangzhou 310027, Peoples R China
[2] Univ Liege, Dept Elect Engn & Comp Sci, B-4000 Liege, Belgium
[3] Univ Leuven, ESAT MICAS, B-3001 Leuven, Belgium
[4] Chinese Acad Sci, SIMIT, Shanghai 200050, Peoples R China
[5] Huazhong Univ Sci & Technol, PGMF, Wuhan 430074, Peoples R China
[6] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Peoples R China
关键词
micromachined; micro accelerometers; accelerometer structure; low-g accelerometer; seismometer; Micro-Electro-Mechanical System (MEMS); inertial sensors; accelerometer review; CAPACITIVE MEMS ACCELEROMETER; DISPLACEMENT SENSOR; HIGH-PRECISION; DESIGN; PERFORMANCE; INTERFACE;
D O I
10.3390/s20144054
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This paper reviews the research and development of micromachined accelerometers with a noise floor lower than 1 mu g/root Hz. Firstly, the basic working principle of micromachined accelerometers is introduced. Then, different methods of reducing the noise floor of micromachined accelerometers are analyzed. Different types of micromachined accelerometers with a noise floor below 1 mu g/root Hz are discussed. Such sensors can mainly be categorized into: (i) micromachined accelerometers with a low spring constant; (ii) with a large proof mass; (iii) with a high quality factor; (iv) with a low noise interface circuit; (v) with sensing schemes leading to a high scale factor. Finally, the characteristics of various micromachined accelerometers and their trends are discussed and investigated.
引用
收藏
页数:36
相关论文
共 124 条
[51]   Late-rally deformable optical NEMS grating transducers for inertial sensing applications [J].
Keeler, BEN ;
Bogart, GR ;
Carr, DW .
NANOFABRICATION: TECHNOLOGIES, DEVICES AND APPLICATIONS, 2004, 5592 :306-312
[52]   Experimental demonstration of a laterally deformable optical nanoelectromechanical system grating transducer [J].
Keeler, BEN ;
Carr, DW ;
Sullivan, JP ;
Friedmann, TA ;
Wendt, JR .
OPTICS LETTERS, 2004, 29 (11) :1182-1184
[53]   A new capacitive displacement sensor with high accuracy and long-range [J].
Kim, Moojin ;
Moon, Wonkyu ;
Yoon, Euisung ;
Lee, Kwang-Ryeol .
SENSORS AND ACTUATORS A-PHYSICAL, 2006, 130 (135-141) :135-141
[54]  
Krause AG, 2012, NAT PHOTONICS, V6, P768, DOI [10.1038/NPHOTON.2012.245, 10.1038/nphoton.2012.245]
[55]   In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor [J].
Krishnamoorthy, U. ;
Olsson, R. H., III ;
Bogart, G. R. ;
Baker, M. S. ;
Carr, D. W. ;
Swiler, T. P. ;
Clews, P. J. .
SENSORS AND ACTUATORS A-PHYSICAL, 2008, 145 :283-290
[56]   A high-sensitivity MEMS-based accelerometer [J].
Lainé, Jérôme ;
Mougenot, Denis .
Leading Edge, 2014, 33 (11) :1234-1242
[57]  
Le Traon O, 2012, 2012 EUROPEAN FREQUENCY AND TIME FORUM (EFTF), P214
[58]  
Levchenko DG, 2010, SEISM INSTRUM, V46, P250, DOI 10.3103/S0747923910030072
[59]  
Levy R., 2016, P 2016 S DES TEST IN, P1
[60]   A Fiber Bragg Grating Sensing-Based Micro-Vibration Sensor and Its Application [J].
Li, Tianliang ;
Tan, Yuegang ;
Zhou, Zude .
SENSORS, 2016, 16 (04)