Wavelet Methods in Computational Fluid Dynamics

被引:212
作者
Schneider, Kai [1 ,2 ,3 ]
Vasilyev, Oleg V. [4 ]
机构
[1] CNRS, Lab Modelisat Mecan & Procedes Propres, F-13451 Marseille 20, France
[2] Univ Aix Marseille, F-13451 Marseille 20, France
[3] Univ Aix Marseille 1, Ctr Math & Informat, F-13453 Marseille 13, France
[4] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
adaptive methods for Navier-Stokes equations; multiresolution analysis; hierarchy of turbulence models; coherent vortex extraction and simulation; adaptive large-eddy simulations; PARTIAL-DIFFERENTIAL-EQUATIONS; COHERENT VORTEX SIMULATION; BRINKMAN PENALIZATION METHOD; ADAPTIVE MESH REFINEMENT; COLLOCATION METHOD; NUMERICAL-SOLUTION; DIVERGENCE-FREE; BOUNDARY-CONDITIONS; DECAYING TURBULENCE; ORTHONORMAL BASES;
D O I
10.1146/annurev-fluid-121108-145637
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This article reviews state-of-the-art adaptive, multiresolution wavelet methodologies for modeling and simulation of turbulent flows with various examples. Different numerical methods for solving the Navier-Stokes equations in adaptive wavelet bases are described. We summarize coherent vortex extraction methodologies, which utilize the efficient wavelet decomposition of turbulent flows into space-scale contributions, and present a hierarchy of wavelet-based turbulence models. Perspectives for modeling and computing industrially relevant flows are also given.
引用
收藏
页码:473 / 503
页数:31
相关论文
共 151 条
  • [71] On the structure and dynamics of sheared and rotating turbulence: Direct numerical simulation and wavelet-based coherent vortex extraction
    Jacobitz, Frank G.
    Liechtenstein, Lukas
    Schneider, Kai
    Farge, Marie
    [J]. PHYSICS OF FLUIDS, 2008, 20 (04)
  • [72] WAVELET METHODS FOR FAST RESOLUTION OF ELLIPTIC PROBLEMS
    JAFFARD, S
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (04) : 965 - 986
  • [73] A wavelet-optimized, very high order adaptive grid and order numerical method
    Jameson, L
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (06) : 1980 - 2013
  • [74] Kaibara MK, 2001, GODUNOV METHODS: THEORY AND APPLICATIONS, P497
  • [75] Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box
    Kaneda, Y
    Ishihara, T
    Yokokawa, M
    Itakura, K
    Uno, A
    [J]. PHYSICS OF FLUIDS, 2003, 15 (02) : L21 - L24
  • [76] Fourier spectral and wavelet solvers for the incompressible Navier-Stokes equations with volume-penalization: Convergence of a dipole-wall collision
    Keetels, G. H.
    D'Ortona, U.
    Kramer, W.
    Clercx, H. J. H.
    Schneider, K.
    van Heijst, G. J. F.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 227 (02) : 919 - 945
  • [77] Scaling of space-time modes with Reynolds number in two-dimensional turbulence
    Kevlahan, N. K. -R.
    Alam, J.
    Vasilyev, O. V.
    [J]. JOURNAL OF FLUID MECHANICS, 2007, 570 : 217 - 226
  • [78] An adaptive wavelet collocation method for fluid-structure interaction at high Reynolds numbers
    Kevlahan, NKR
    Vasilyev, OV
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (06) : 1894 - 1915
  • [79] Multiscale flow simulations using particles
    Koumoutsakos, P
    [J]. ANNUAL REVIEW OF FLUID MECHANICS, 2005, 37 : 457 - 487
  • [80] Wavelet techniques for the Fictitious-Domain-Lagrange-Multiplier-Approach
    Kunoth, A
    [J]. NUMERICAL ALGORITHMS, 2001, 27 (03) : 291 - 316