On loop states in loop-quantum gravity

被引:7
作者
Dass, N. D. Hari [1 ]
Mathur, Manu
机构
[1] Hayama Ctr Adv Studies, Kanagawa 2400193, Japan
[2] SN Bose Natl Ctr Basic Sci, Kolkata 700091, W Bengal, India
关键词
D O I
10.1088/0264-9381/24/9/002
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We explicitly construct and characterize all possible independent loop states in (3 + 1)-dimensional loop-quantum gravity by regulating it on a 3D regular lattice in the Hamiltonian formalism. These loop states, characterized by the (dual) angular momentum quantum numbers, describe SU(2) rigid rotators on the links of the lattice. The loop states are constructed using the Schwinger bosons which are harmonic oscillators in the fundamental (spin half) representation of SU(2). Using the generalized Wigner-Eckart theorem, we compute the matrix elements of the volume operator in the loop basis. Some simple loop eigenstates of the volume operator are explicitly constructed.
引用
收藏
页码:2179 / 2191
页数:13
相关论文
共 36 条
[1]   DUALITY TRANSFORMATION FOR NON-ABELIAN LATTICE GAUGE-THEORIES [J].
ANISHETTY, R ;
SHARATCHANDRA, HS .
PHYSICAL REVIEW LETTERS, 1990, 65 (07) :813-815
[2]   Background independent quantum giravity: a status report [J].
Ashtekar, A ;
Lewandowski, J .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (15) :R53-R152
[3]  
Ashtekar A., 1998, Adv. Theor. Math. Phys, V1, P388, DOI [10.4310/ATMP.1997.v1.n2.a8, DOI 10.4310/ATMP.1997.V1.N2.A8]
[4]   Simplification of the spectral analysis of the volume operator in loop quantum gravity [J].
Brunnemann, J ;
Thiemann, T .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (04) :1289-1346
[5]   The basis of the physical Hilbert space of lattice gauge theories [J].
Burgio, G ;
De Pietri, R ;
Morales-Técotl, HA ;
Urrutia, LF ;
Vergara, JD .
NUCLEAR PHYSICS B, 2000, 566 (03) :547-561
[6]  
Crane L., 1993, SERIES KNOTS EVERYTH, DOI [10.1142/9789812796387_0005, DOI 10.1142/9789812796387_0005]
[7]   Geometry eigenvalues and the scalar product from recoupling theory in loop quantum gravity [J].
DePietri, R ;
Rovelli, C .
PHYSICAL REVIEW D, 1996, 54 (04) :2664-2690
[8]   YANG-MILLS VACUUM - AN ATTEMPT AT LATTICE LOOP CALCULUS [J].
FURMANSKI, W ;
KOLAWA, A .
NUCLEAR PHYSICS B, 1987, 291 (03) :594-628
[9]  
Gambini R., 2000, LOOPS KNOTS GAUGE TH
[10]  
Giesel K, 2006, CLASSICAL QUANT GRAV, V23, P5667, DOI 10.1088/0264-9381/23/18/011