A machine learning-based classification approach on Parkinson's disease diffusion tensor imaging datasets

被引:26
|
作者
Prasuhn, Jannik [1 ,2 ]
Heldmann, Marcus [2 ,3 ]
Muente, Thomas F. [2 ]
Brueggemann, Norbert [1 ,2 ]
机构
[1] Univ Lubeck, Inst Neurogenet, Dept Neurol, Ratzeburger Allee 160, D-23538 Lubeck, Germany
[2] Univ Med Ctr Schleswig Holstein, Dept Neurol, Campus Lubeck,Ratzeburger Allee 160, D-23538 Lubeck, Germany
[3] Univ Lubeck, Inst Psychol 2, Ratzeburger Allee 160, D-23538 Lubeck, Germany
来源
NEUROLOGICAL RESEARCH AND PRACTICE | 2020年 / 2卷 / 01期
关键词
Parkinson's disease; DTI; Machine learning; Substantia nigra; Neuroimaging; SUPPORT VECTOR MACHINE; ALZHEIMERS-DISEASE; MRI;
D O I
10.1186/s42466-020-00092-y
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
IntroductionThe presence of motor signs and symptoms in Parkinson's disease (PD) is the result of a long-lasting prodromal phase with an advancing neurodegenerative process. The identification of PD patients in an early phase is, however, crucial for developing disease-modifying drugs. The objective of our study is to investigate whether Diffusion Tensor Imaging (DTI) of the Substantia nigra (SN) analyzed by machine learning algorithms (ML) can be used to identify PD patients.MethodsOur study proposes the use of computer-aided algorithms and a highly reproducible approach (in contrast to manually SN segmentation) to increase the reliability and accuracy of DTI metrics used for classification.ResultsThe results of our study do not confirm the feasibility of the DTI approach, neither on a whole-brain level, ROI-labelled analyses, nor when focusing on the SN only.ConclusionsOur study did not provide any evidence to support the hypothesis that DTI-based analysis, in particular of the SN, could be used to identify PD patients correctly.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Machine learning-based prediction of cognitive outcomes in de novo Parkinson’s disease
    Joshua Harvey
    Rick A. Reijnders
    Rachel Cavill
    Annelien Duits
    Sebastian Köhler
    Lars Eijssen
    Bart P. F. Rutten
    Gemma Shireby
    Ali Torkamani
    Byron Creese
    Albert F. G. Leentjens
    Katie Lunnon
    Ehsan Pishva
    npj Parkinson's Disease, 8
  • [42] Reinforcement Learning-Based Adaptive Classification for Medication State Monitoring in Parkinson's Disease
    Shuqair, Mustafa
    Jimenez-Shahed, Joohi
    Ghoraani, Behnaz
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (10) : 6168 - 6179
  • [43] Deep Learning-Based Parkinson's Disease Classification Using Vocal Feature Sets
    Gunduz, Hakan
    IEEE ACCESS, 2019, 7 : 115540 - 115551
  • [44] Machine Learning for the Classification of Alzheimer's Disease and Its Prodromal Stage Using Brain Diffusion Tensor Imaging Data: A Systematic Review
    Billeci, Lucia
    Badolato, Asia
    Bachi, Lorenzo
    Tonacci, Alessandro
    PROCESSES, 2020, 8 (09)
  • [45] Exploring the Potential Imaging Biomarkers for Parkinson's Disease Using Machine Learning Approach
    Mushta, Illia
    Koks, Sulev
    Popov, Anton
    Lysenko, Oleksandr
    BIOENGINEERING-BASEL, 2025, 12 (01):
  • [46] Machine learning-based approach for zircon classification and genesis determination
    Zhu Z.
    Zhou F.
    Wang Y.
    Zhou T.
    Hou Z.
    Qiu K.
    Earth Science Frontiers, 2022, 29 (05) : 464 - 475
  • [47] A machine learning-based classification approach for phase diagram prediction
    Deffrennes, Guillaume
    Terayama, Kei
    Abe, Taichi
    Tamura, Ryo
    MATERIALS & DESIGN, 2022, 215
  • [48] Diffusion Tensor Imaging in Parkinson's Disease and Parkinsonian Syndrome: A Systematic Review
    Zhang, Yu
    Burock, Marc A.
    FRONTIERS IN NEUROLOGY, 2020, 11
  • [49] Diffusion tensor imaging parameters’ changes of cerebellar hemispheres in Parkinson’s disease
    Enricomaria Mormina
    Alessandro Arrigo
    Alessandro Calamuneri
    Francesca Granata
    Angelo Quartarone
    Maria F. Ghilardi
    Matilde Inglese
    Alessandro Di Rocco
    Demetrio Milardi
    Giuseppe P. Anastasi
    Michele Gaeta
    Neuroradiology, 2015, 57 : 327 - 334
  • [50] Diffusion Tensor Imaging of Parkinson's Disease, Atypical Parkinsonism, and Essential Tremor
    Prodoehl, Janey
    Li, Hong
    Planetta, Peggy J.
    Goetz, Christopher G.
    Shannon, Kathleen M.
    Tangonan, Ruth
    Comella, Cynthia L.
    Simuni, Tanya
    Zhou, Xiaohong Joe
    Leurgans, Sue
    Corcos, Daniel M.
    Vaillancourt, David E.
    MOVEMENT DISORDERS, 2013, 28 (13) : 1816 - 1822