A machine learning-based classification approach on Parkinson's disease diffusion tensor imaging datasets

被引:26
|
作者
Prasuhn, Jannik [1 ,2 ]
Heldmann, Marcus [2 ,3 ]
Muente, Thomas F. [2 ]
Brueggemann, Norbert [1 ,2 ]
机构
[1] Univ Lubeck, Inst Neurogenet, Dept Neurol, Ratzeburger Allee 160, D-23538 Lubeck, Germany
[2] Univ Med Ctr Schleswig Holstein, Dept Neurol, Campus Lubeck,Ratzeburger Allee 160, D-23538 Lubeck, Germany
[3] Univ Lubeck, Inst Psychol 2, Ratzeburger Allee 160, D-23538 Lubeck, Germany
来源
NEUROLOGICAL RESEARCH AND PRACTICE | 2020年 / 2卷 / 01期
关键词
Parkinson's disease; DTI; Machine learning; Substantia nigra; Neuroimaging; SUPPORT VECTOR MACHINE; ALZHEIMERS-DISEASE; MRI;
D O I
10.1186/s42466-020-00092-y
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
IntroductionThe presence of motor signs and symptoms in Parkinson's disease (PD) is the result of a long-lasting prodromal phase with an advancing neurodegenerative process. The identification of PD patients in an early phase is, however, crucial for developing disease-modifying drugs. The objective of our study is to investigate whether Diffusion Tensor Imaging (DTI) of the Substantia nigra (SN) analyzed by machine learning algorithms (ML) can be used to identify PD patients.MethodsOur study proposes the use of computer-aided algorithms and a highly reproducible approach (in contrast to manually SN segmentation) to increase the reliability and accuracy of DTI metrics used for classification.ResultsThe results of our study do not confirm the feasibility of the DTI approach, neither on a whole-brain level, ROI-labelled analyses, nor when focusing on the SN only.ConclusionsOur study did not provide any evidence to support the hypothesis that DTI-based analysis, in particular of the SN, could be used to identify PD patients correctly.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Preliminary Study of Depression in Parkinson's Disease with Diffusion Tensor Imaging
    Dejie, C.
    QuanXi, S.
    Shihuo, C.
    MOVEMENT DISORDERS, 2018, 33 : S749 - S750
  • [32] Machine learning-based classification of chronic traumatic brain injury using hybrid diffusion imaging
    Muller, Jennifer J.
    Wang, Ruixuan
    Milddleton, Devon
    Alizadeh, Mahdi
    Kang, Ki Chang
    Hryczyk, Ryan
    Zabrecky, George
    Hriso, Chloe
    Navarreto, Emily
    Wintering, Nancy
    Bazzan, Anthony J.
    Wu, Chengyuan
    Monti, Daniel A.
    Jiao, Xun
    Wu, Qianhong
    Newberg, Andrew B.
    Mohamed, Feroze B.
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [33] Diffusion Tensor Imaging to Characterized Early Stages of Parkinson's Disease
    Batista, K.
    Rodriguez, R.
    Carballo, M.
    Morales, J. M.
    VI LATIN AMERICAN CONGRESS ON BIOMEDICAL ENGINEERING (CLAIB 2014), 2014, 49 : 397 - 400
  • [34] Diffusion Tensor Imaging in GBA-Related Parkinson's Disease
    Dayan, R.
    Bick, A.
    Muller, C.
    Levin, N.
    Arkadir, D.
    MOVEMENT DISORDERS, 2023, 38 : S471 - S472
  • [35] High resolution diffusion tensor MRI imaging of Parkinson's disease
    Gitelman, D. R.
    Wu, M.
    Vaillancourt, D.
    Stell, B.
    Parrish, T. B.
    Simuni, T.
    MOVEMENT DISORDERS, 2011, 26 : S243 - S243
  • [36] Case control study of diffusion tensor imaging in Parkinson's disease
    Chan, L-L
    Rumpel, H.
    Yap, K.
    Lee, E.
    Loo, H-V
    Ho, G-L
    Fook-Chong, S.
    Yuen, Y.
    Tan, E-K
    JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2007, 78 (12): : 1383 - 1386
  • [37] Machine Learning-Based Multimodel Computing for Medical Imaging for Classification and Detection of Alzheimer Disease
    Alghamedy, Fatemah H. H.
    Shafiq, Muhammad
    Liu, Lijuan
    Yasin, Affan
    Khan, Rehan Ali
    Mohammed, Hussien Sobahi
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [38] Machine learning-based classification of Parkinson's disease using acoustic features: Insights from multilingual speech tasks
    Department of AI & Informatics, Graduate School, Sangmyung University, Hongjimun 2-Gil 20, Jongno-gu, Seoul
    03016, Korea, Republic of
    不详
    07061, Korea, Republic of
    不详
    03016, Korea, Republic of
    不详
    03080, Korea, Republic of
    Comput. Biol. Med.,
  • [39] Aberrant nigral diffusion in Parkinson's disease: A longitudinal diffusion tensor imaging study
    Loane, Clare
    Politis, Marios
    Kefalopoulou, Zinovia
    Valle-Guzman, Natalie
    Paul, Gesine
    Widner, Hakan
    Foltynie, Thomas
    Barker, Roger A.
    Piccini, Paola
    MOVEMENT DISORDERS, 2016, 31 (07) : 1020 - 1026
  • [40] Machine learning-based prediction of cognitive outcomes in de novo Parkinson's disease
    Harvey, Joshua
    Reijnders, Rick A.
    Cavill, Rachel
    Duits, Annelien
    Kohler, Sebastian
    Eijssen, Lars
    Rutten, Bart P. F.
    Shireby, Gemma
    Torkamani, Ali
    Creese, Byron
    Leentjens, Albert F. G.
    Lunnon, Katie
    Pishva, Ehsan
    NPJ PARKINSONS DISEASE, 2022, 8 (01)