Statistical convergence and ideal convergence for sequences of functions

被引:153
作者
Balcerzak, Marek
Dems, Katarzyna
Komisarski, Andrzej
机构
[1] Tech Univ Lodz, Math Inst, PL-93005 Lodz, Poland
[2] Tech Univ Lodz, Ctr Math & Phys, PL-00924 Lodz, Poland
[3] Univ Lodz, Fac Math, PL-90238 Lodz, Poland
关键词
I-uniform convergence; equi-statistical convergence; statistical Egorov's theorem; statistical convergence in measure;
D O I
10.1016/j.jmaa.2006.05.040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let I subset of P(N) stand for an ideal containing finite sets. We discuss various kinds of statistical convergence and I-convergence for sequences of functions with values in R or in a metric space. For real valued measurable functions defined on a measure space (X, M, mu), we obtain a statistical version of the Egorov theorem (when mu(X) < infinity). We show that, in its assertion, equi-statistical convergence on a big set cannot be replaced by uniform statistical convergence. Also, we consider statistical convergence in measure and I-convergence in measure, with some consequences of the Riesz theorem. We prove that outer and inner statistical convergences in measure (for sequences of measurable functions) are equivalent if the measure is finite. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:715 / 729
页数:15
相关论文
共 25 条
[1]  
Balcerzak M., 2004, Real Anal. Exchange, V30, P267
[2]   AN EXTENSION OF EGOROVS THEOREM [J].
BARTLE, RG .
AMERICAN MATHEMATICAL MONTHLY, 1980, 87 (08) :628-633
[3]   A characterization of Banach spaces with separable duals via weak statistical convergence [J].
Connor, J ;
Ganichev, M ;
Kadets, V .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 244 (01) :251-261
[4]  
Cooke R.G, 1950, Infinite Matrices and Sequence Spaces
[5]  
Dems K., 2004, Real Anal. Exchange, V30, P123, DOI DOI 10.14321/REALANALEXCH.30.1.0123
[6]  
Farah I, 2000, MEM AM MATH SOC, V148, pV
[7]  
Fast H., 1951, Colloq. Math., V2, P241
[8]  
Federer H., 2014, Geometric Measure Theory
[9]  
FREMLIN DH, 2001, MEASURE THEORY, V2
[10]  
Fridy J. A., 1985, Analysis, V5, P301