A phase-fitted Runge-Kutta-Nystrom method for the numerical solution of initial value problems with oscillating solutions

被引:48
作者
Papadopoulos, D. F. [1 ]
Anastassi, Z. A. [1 ]
Simos, T. E. [1 ]
机构
[1] Univ Peloponnese, Fac Sci & Technol, Dept Comp Sci & Technol, Sci Computat Lab, GR-22100 Tripolis, Greece
关键词
Runge-Kutta-Nystrom methods; Phase-fitted; Initial-value problems; Phase-lag infinity; NOUMEROV-TYPE METHOD; SCHRODINGER-EQUATION; INTEGRATION; LAG;
D O I
10.1016/j.cpc.2009.05.014
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A new Runge-Kutta-Nystrom method, with phase-lag of order infinity, for the integration of second-order periodic initial-value problems is developed in this paper. The new method is based on the Dormand, El-Mikkawy and Prince Runge-Kutta-Nystrom method of algebraic order four with four (three effective) stages. Numerical illustrations indicate that the new method is much more efficient than other methods derived, based on the idea of minimal phase lag or of phase lag of order infinity. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1839 / 1846
页数:8
相关论文
共 13 条
[1]   A ONE-STEP METHOD FOR DIRECT INTEGRATION OF STRUCTURAL DYNAMIC EQUATIONS [J].
BRUSA, L ;
NIGRO, L .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1980, 15 (05) :685-699
[2]   A NOUMEROV-TYPE METHOD WITH MINIMAL PHASE-LAG FOR THE INTEGRATION OF 2ND-ORDER PERIODIC INITIAL-VALUE PROBLEMS .2. EXPLICIT METHOD [J].
CHAWLA, MM ;
RAO, PS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1986, 15 (03) :329-337
[3]   A NOUMEROV-TYPE METHOD WITH MINIMAL PHASE-LAG FOR THE INTEGRATION OF 2ND ORDER PERIODIC INITIAL-VALUE PROBLEMS [J].
CHAWLA, MM ;
RAO, PS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1984, 11 (03) :277-281
[4]   AN EXPLICIT 6TH-ORDER METHOD WITH PHASE-LAG OF ORDER 8 FOR Y''=F(T, Y) [J].
CHAWLA, MM ;
RAO, PS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1987, 17 (03) :365-368
[5]   FAMILIES OF RUNGE-KUTTA-NYSTROM FORMULAS [J].
DORMAND, JR ;
ELMIKKAWY, MEA ;
PRINCE, PJ .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1987, 7 (02) :235-250
[6]  
Fehlberg E, 1972, NASATRR381
[7]   A RUNGE-KUTTA-NYSTROM METHOD FOR THE NUMERICAL-INTEGRATION OF SPECIAL 2ND-ORDER PERIODIC INITIAL-VALUE PROBLEMS [J].
SIMOS, TE ;
DIMAS, E ;
SIDERIDIS, AB .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1994, 51 (03) :317-326
[8]   A modified Runge-Kutta method with phase-lag of order infinity for the numerical solution of the Schrodinger equation and related problems [J].
Simos, TE ;
Vigo-Aguiar, J .
COMPUTERS & CHEMISTRY, 2001, 25 (03) :275-281
[9]   RUNGE-KUTTA-NYSTROM INTERPOLANTS FOR THE NUMERICAL-INTEGRATION OF SPECIAL 2ND-ORDER PERIODIC INITIAL-VALUE PROBLEMS [J].
SIMOS, TE .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1993, 26 (12) :7-15
[10]  
SIMOS TE, 1998, J SCI COMPUTING, V13, P1