Evanescent-field-modulated two-qubit entanglement in an emitters-plasmon coupled system

被引:8
作者
Zhang, Fan [1 ]
Ren, Juanjuan [1 ]
Duan, Xueke [1 ]
Chen, Zhao [1 ]
Gong, Qihuang [1 ,2 ]
Gu, Ying [1 ,2 ]
机构
[1] Peking Univ, Collaborat Innovat Ctr Quantum Matter, State Key Lab Mesoscop Phys, Dept Phys, Beijing 100871, Peoples R China
[2] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
quantum entanglement; surface plasmon; evanescent field; nanostructures; QUANTUM ENTANGLEMENT; ROOM-TEMPERATURE; WAVE-GUIDES; EMISSION; PHOTONS; STATE;
D O I
10.1088/1361-648X/aacc4f
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Scalable integrated quantum information network calls for controllable entanglement modulation at subwavelength scale. To reduce laser disturbance among adjacent nanostructures, here we theoretically demonstrate two-qubit entanglement modulated by an evanescent field of a dielectric nanowire in an emitter-AgNP coupled system. This coupled system is considered as a nano-cavity system embedded in an evanescent vacuum. Through varying the amplitude of evanescent field, the concurrence of steady-state entanglement can be modified from 0 to 0.75. Because the interaction between emitters and the nanowire is much weaker than that inside the coupled system, the range of modulation for two-qubit entanglement is insensitive to their distance. The evanescent field controlled entangled state engineering provides the possibility to avoid optical crosstalk for on-chip steady-state entanglement.
引用
收藏
页数:10
相关论文
共 68 条
  • [1] Quantum Communication beyond the Localization Length in Disordered Spin Chains
    Allcock, Jonathan
    Linden, Noah
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (11)
  • [2] Near-Unity Coupling Efficiency of a Quantum Emitter to a Photonic Crystal Waveguide
    Arcari, M.
    Sollner, I.
    Javadi, A.
    Hansen, S. Lindskov
    Mahmoodian, S.
    Liu, J.
    Thyrrestrup, H.
    Lee, E. H.
    Song, J. D.
    Stobbe, S.
    Lodahl, P.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 113 (09)
  • [3] Surface plasmons in a metal nanowire coupled to colloidal quantum dots: Scattering properties and quantum entanglement
    Chen, Guang-Yin
    Lambert, Neill
    Chou, Chung-Hsien
    Chen, Yueh-Nan
    Nori, Franco
    [J]. PHYSICAL REVIEW B, 2011, 84 (04)
  • [4] Metallodielectric Hybrid Antennas for Ultrastrong Enhancement of Spontaneous Emission
    Chen, Xue-Wen
    Agio, Mario
    Sandoghdar, Vahid
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (23)
  • [5] Hybrid plasmonic-photonic mode in a subwavelength fiber for enhanced single-nanoparticle detection
    Chen, You-Ling
    Gong, Qihuang
    [J]. PHYSICAL REVIEW A, 2015, 91 (01):
  • [6] Single-molecule strong coupling at room temperature in plasmonic nanocavities
    Chikkaraddy, Rohit
    de Nijs, Bart
    Benz, Felix
    Barrow, Steven J.
    Scherman, Oren A.
    Rosta, Edina
    Demetriadou, Angela
    Fox, Peter
    Hess, Ortwin
    Baumberg, Jeremy J.
    [J]. NATURE, 2016, 535 (7610) : 127 - 130
  • [7] A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules
    De Angelis, Francesco
    Patrini, Maddalena
    Das, Gobind
    Maksymov, Ivan
    Galli, Matteo
    Businaro, Luca
    Andreani, Lucio Claudio
    Di Fabrizio, Enzo
    [J]. NANO LETTERS, 2008, 8 (08) : 2321 - 2327
  • [8] Modal theory of modified spontaneous emission of a quantum emitter in a hybrid plasmonic photonic-crystal cavity system
    Dezfouli, Mohsen Kamandar
    Gordon, Reuven
    Hughes, Stephen
    [J]. PHYSICAL REVIEW A, 2017, 95 (01)
  • [9] Surface plasmon polariton scattering by finite-size nanoparticles
    Evlyukhin, A. B.
    Brucoli, G.
    Martin-Moreno, L.
    Bozhevolnyi, S. I.
    Garcia-Vidal, F. J.
    [J]. PHYSICAL REVIEW B, 2007, 76 (07):
  • [10] Transient and steady-state entanglement mediated by three-dimensional plasmonic waveguides
    Gangaraj, S. Ali Hassani
    Nemilentsau, Andrei
    Hanson, George W.
    Hughes, Stephen
    [J]. OPTICS EXPRESS, 2015, 23 (17): : 22330 - 22346