Non-line-of-sight imaging over 1.43 km

被引:102
作者
Wu, Cheng [1 ,2 ,3 ,4 ]
Liu, Jianjiang [1 ,2 ,3 ,4 ,5 ]
Huang, Xin [1 ,2 ,3 ,4 ]
Li, Zheng-Ping [1 ,2 ,3 ,4 ]
Yu, Chao [1 ,2 ,3 ,4 ]
Ye, Jun-Tian [1 ,2 ,3 ,4 ]
Zhang, Jun [1 ,2 ,3 ,4 ]
Zhang, Qiang [1 ,2 ,3 ,4 ]
Dou, Xiankang [1 ,2 ,5 ,6 ]
Goyal, Vivek K. [7 ]
Xu, Feihu [1 ,2 ,3 ,4 ]
Pan, Jian-Wei [1 ,2 ,3 ,4 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China
[3] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phy, Shanghai Branch, Shanghai 201315, Peoples R China
[4] Shanghai Res Ctr Quantum Sci, Shanghai 201315, Peoples R China
[5] Univ Sci & Technol China, Sch Earth & Space Sci, Hefei 230026, Peoples R China
[6] Wuhan Univ, Sch Elect Informat, Wuhan 430072, Peoples R China
[7] Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA
基金
中国国家自然科学基金; 上海市科技启明星计划;
关键词
non-line-of-sight imaging; optical imaging; computational imaging; computer vision; RECONSTRUCTION; SCENES;
D O I
10.1073/pnas.2024468118
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Non-line-of-sight (NLOS) imaging has the ability to reconstruct hidden objects from indirect light paths that scatter multiple times in the surrounding environment, which is of considerable interest in a wide range of applications. Whereas conventional imaging involves direct line-of-sight light transport to recover the visible objects, NLOS imaging aims to reconstruct the hidden objects from the indirect light paths that scatter multiple times, typically using the information encoded in the time-of-flight of scattered photons. Despite recent advances, NLOS imaging has remained at short-range realizations, limited by the heavy loss and the spatial mixing due to the multiple diffuse reflections. Here, both experimental and conceptual innovations yield hardware and software solutions to increase the standoff distance of NLOS imaging from meter to kilometer range, which is about three orders of magnitude longer than previous experiments. In hardware, we develop a high-efficiency, low-noise NLOS imaging system at near-infrared wavelength based on a dual-telescope confocal optical design. In software, we adopt a convex optimizer, equipped with a tailored spatial-temporal kernel expressed using three-dimensional matrix, to mitigate the effect of the spatial-temporal broadening over long standoffs. Together, these enable our demonstration of NLOS imaging and real-time tracking of hidden objects over a distance of 1.43 km. The results will open venues for the development of NLOS imaging techniques and relevant applications to real-world conditions.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Non-line-of-sight imaging based on Archimedean spiral scanning
    Zhang, Meiling
    Shi, Yaoyao
    Sheng, Wei
    Liu, Jiaqing
    Li, Jingwen
    Wei, Yang
    Wang, Bin
    Zhang, Dejin
    Liu, Youwen
    [J]. OPTICS COMMUNICATIONS, 2023, 537
  • [22] Influence of Target Surface BRDF on Non-Line-of-Sight Imaging
    Yang Yufeng
    Zhang Ao
    Guo Youcheng
    Zhu Wenzhuo
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (18)
  • [23] Non-line-of-sight Imaging with Partial Occluders and Surface Normals
    Heide, Felix
    O'Toole, Matthew
    Zang, Kai
    Lindell, David
    Diamond, Steven
    Wetzstein, Gordon
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2019, 38 (03):
  • [24] Non-line-of-sight transient rendering
    Royo, Diego
    Garcia, Jorge
    Munoz, Adolfo
    Jarabo, Adrian
    [J]. COMPUTERS & GRAPHICS-UK, 2022, 107 : 84 - 92
  • [25] Fast Non-line-of-sight Imaging with Non-planar Relay Surfaces
    Gu, Chaoying
    Sultan, Talha
    Masumnia-Bisheh, Khadijeh
    Waller, Laura
    Velten, Andreas
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL PHOTOGRAPHY, ICCP, 2023,
  • [26] Non-Line-of-Sight Transient Rendering
    Royo, Diego
    Garcia, Jorge
    Luesia-Lahoz, Pablo
    Marco, Julio
    Gutierrez, Diego
    Munoz, Adolfo
    Jarabo, Adrian
    [J]. PROCEEDINGS OF SIGGRAPH 2022 POSTERS, SIGGRAPH 2022, 2022,
  • [27] A Gradient-Gated SPAD Array for Non-Line-of-Sight Imaging
    Zhao, Jiuxuan
    Gramuglia, Francesco
    Keshavarzian, Pouyan
    Toh, Eng-Huat
    Tng, Michelle
    Lim, Louis
    Dhulla, Vinit
    Quek, Elgin
    Lee, Myung-Jae
    Charbon, Edoardo
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2024, 30 (01) : 1 - 10
  • [28] Non-line-of-sight imaging and location determination using deep learning
    Wang, Zhiyuan
    Huang, Huiling
    Li, Haoran
    Chen, Ziyang
    Han, Jun
    Pu, Jixiong
    [J]. OPTICS AND LASERS IN ENGINEERING, 2023, 169
  • [29] Learning to Enhance Aperture Phasor Field for Non-Line-of-Sight Imaging
    Cho, In
    Shim, Hyunbo
    Kim, Seon Joo
    [J]. COMPUTER VISION-ECCV 2024, PT XLIII, 2025, 15101 : 72 - 89
  • [30] Multispectral non-line-of-sight imaging via deep fusion photography
    Hao Liu
    Zhen Xu
    Yifan Wei
    Kai Han
    Xin Peng
    [J]. Science China Information Sciences, 2025, 68 (4)