Experimental fusion of the sheep cervical spine.: Part I:: Effect of cage design on interbody fusion

被引:0
|
作者
Kandziora, F [1 ]
Pflugmacher, R [1 ]
Scholz, M [1 ]
Schäfer, J [1 ]
Schollmeier, G [1 ]
Schnake, KJ [1 ]
Bail, H [1 ]
Duda, G [1 ]
Haas, NP [1 ]
机构
[1] Humboldt Univ, Klinikum Charite, D-13353 Berlin, Germany
来源
CHIRURG | 2002年 / 73卷 / 09期
关键词
cervical spine; sheep; animal model; interbody fusion; cages; design; biomechanics;
D O I
10.1007/s00104-002-0489-2
中图分类号
R61 [外科手术学];
学科分类号
摘要
Introduction. There has been a rapid increase in the use of interbody fusion cages as an adjunct to spondylodesis, although experimental data are lacking. A sheep cervical spine interbody fusion model was used to determine the effect of different cage design parameters (endplate-implant contact area, maximum contiguous pore) on interbody fusion. Material and Method. In vitro evaluation: 24 sheep cadaver specimens (C2-C5) were tested in flexion, extension, axial rotation, and lateral bending with a nondestructive flexibility method using a non-constrained testing apparatus. Four different groups were examined: (1) control group (intact) (n=24), (2) autologous tricortical iliac crest bone graft (n=8),(3) Harms cage (n=8), and (4) SynCage-C (n=8). In vivo evaluation: 24 sheep underwent C3/4 discectomy and fusion: group 1: autologous tricortical iliac crest bone graft (n=8), group 2: Harms cage filled with autologous cancellous iliac crest bone grafts (n=8), and group 3: SynCage-C filled with autologous cancellous iliac crest bone grafts (n=8). Radiographic scans were performed pre- and postoperatively and after 1, 2,4,8, and 12 weeks, respectively. At the same time points, disc space height (DSH), height index (HI), intervertebral angle (IVA), and endplate angle (EA) were measured. After 12 weeks the animals were killed and fusion sites were evaluated using biomechanical testing in flexion, extension, axial rotation, and lateral bending. Additionally, histomorphological and histomorphometrical analyses were performed. Results. Over a 12-week period the cage groups showed significantly higher values for DSH, HI, IVA, and EA compared to the bone graft. In vivo stiffness was significantly higher for the tricortical iliac crest bone graft and Harms cage than in vitro stiffness. However, there was no difference between in vitro and in vivo stiffness of the SynCage-C. Histomorphometrical evaluation showed a more progressed bone matrix formation in the Harms cage group than in both other groups. Conclusion. The parameter endplate-implant contact area was not able to determine subsidence of cages. In contrast,the maximum contiguous pore of a cage significantly correlates with interbody bone matrix formation inside the cage. Additionally, there was no correlation between in vitro and in vivo stiffness of interbody fusion cages. Therefore, biomechanical in vitro studies are not able to determine in vivo outcome of fusion cages. Animal experimental evaluations of interbody fusion cages are essential prior to clinical use.
引用
收藏
页码:909 / 917
页数:9
相关论文
共 50 条
  • [1] Experimental fusion of the sheep cervical spine. Part I: Effect of cage design on interbody fusion [Experimentelle Spondylodese der Schafshalswirbelsäule: Teil 1: Der Effekt des Cage-Designs auf die intervertebrale Fusion]
    Kandziora F.
    Pflugmacher R.
    Scholz M.
    Schäfer J.
    Schollmeier G.
    Schnake K.J.
    Bail H.
    Duda G.
    Haas N.P.
    Der Chirurg, 2002, 73 (9): : 909 - 917
  • [2] Experimental fusion of the sheep cervical spine. Part II: Effect of growth factors and carrier systems on interbody fusion
    Kandziora, F
    Scholz, M
    Pflugmacher, R
    Krummrey, G
    Schollmeier, G
    Schmidmaier, G
    Schnake, KJ
    Duda, G
    Raschke, M
    Haas, NP
    CHIRURG, 2002, 73 (10): : 1025 - +
  • [3] Influence of cage design on interbody fusion in a sheep cervical spine model
    Kandziora, F
    Schollmeier, G
    Scholz, M
    Schaefer, J
    Scholz, A
    Schmidmaier, G
    Schröder, R
    Bail, H
    Duda, G
    Mittlmeier, T
    Haas, NP
    JOURNAL OF NEUROSURGERY, 2002, 96 (03) : 321 - 332
  • [4] Bioabsorbable interbody cages in a sheep cervical spine fusion model
    Kandziora, F
    Pflugmacher, R
    Scholz, M
    Eindorf, T
    Schnake, KJ
    Haas, NP
    SPINE, 2004, 29 (17) : 1845 - 1855
  • [5] Biomechanical comparison of cervical spine interbody fusion cages
    Kandziora, F
    Pflugmacher, R
    Schäfer, J
    Born, C
    Duda, G
    Haas, NP
    Mittlmeier, T
    SPINE, 2001, 26 (17) : 1850 - 1857
  • [6] Biomechanical comparison of bioabsorbable cervical spine interbody fusion cages
    Pflugmacher, R
    Schleicher, P
    Gumnior, S
    Turan, O
    Scholz, M
    Eindorf, T
    Haas, NP
    Kandziora, F
    SPINE, 2004, 29 (16) : 1717 - 1722
  • [7] Design of a Transforaminal Lumbar Interbody Fusion (TLIF) Spine Cage
    Faadhila, Afrah
    Rahman, Siti Fauziyah
    Whulanza, Yudan
    Supriadi, Sugeng
    Tampubolon, Joshua Yoshihiko
    Wicaksana, Septian Indra
    Rahyussalim, Ahmad Jabir
    Kurniawati, Tri
    Abdullah, Abdul Halim
    INTERNATIONAL JOURNAL OF TECHNOLOGY, 2022, 13 (08) : 1663 - 1671
  • [8] Experimentelle Spondylodese der Schafshalswirbelsäule Teil 2: Der Effekt von Wachstumsfaktoren und Carrier-Systemen auf die intervertebrale FusionExperimental fusion of the sheep cervical spine. Part II: Effect of growth factors and carrier systems on interbody fusion
    F. Kandziora
    M. Scholz
    R. Pflugmacher
    G. Krummrey
    G. Schollmeier
    G. Schmidmaier
    K. J. Schnake
    G. Duda
    M. Raschke
    N. P. Haas
    Der Chirurg, 2002, 73 (10): : 1025 - 1038
  • [9] Application of a stand-alone interbody fusion cage based on porous TiO2/glass composites -: Part 2:: Biomechanical evaluation after implantation in the sheep cervical spine
    Korinth, MC
    Hero, T
    Pandorf, T
    Zell, D
    BIOMEDIZINISCHE TECHNIK, 2005, 50 (04): : 111 - 118
  • [10] Application of a stand-alone interbody fusion cage based on a novel porous TiO2/glass composite -: Part 1:: Implantation in the sheep cervical spine and radiological evaluation
    Korinth, MC
    Hero, T
    Mahnken, AH
    Ragoss, C
    Scherer, K
    BIOMEDIZINISCHE TECHNIK, 2004, 49 (12): : 356 - 363