PARTIAL-DIFFERENTIAL EQUATIONS;
DIFFERENT TIME SCALES;
GENERAL-RELATIVITY;
HYPERBOLIC SYSTEMS;
LARGE PARAMETER;
PERFECT FLUIDS;
APPROXIMATION;
UNIVERSE;
LIMIT;
EXISTENCE;
D O I:
10.1007/s00220-009-0931-0
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
We prove the existence of a large class of one parameter families of solutions to the Einstein-Euler equations that depend on the singular parameter epsilon = nu(T)/c (0 < epsilon < epsilon(0)), where c is the speed of light, and nu(T) is a typical speed of the gravitating fluid. These solutions are shown to exist on a common spacetime slab M congruent to [0, T) x T(3), and converge as epsilon SE arrow 0 to a solution of the cosmological Poisson-Euler equations of Newtonian gravity. Moreover, we establish that these solutions can be expanded in the parameter epsilon to any specified order with expansion coefficients that satisfy epsilon-independent (nonlocal) symmetric hyperbolic equations.
机构:
Washington Univ, Dept Phys, McDonnell Ctr Space Sci, St Louis, MO 63130 USAWashington Univ, Dept Phys, McDonnell Ctr Space Sci, St Louis, MO 63130 USA
机构:
Univ Maryland, Dept Phys, College Pk, MD 20742 USA
Albert Einstein Inst, Max Planck Inst Gravitat Phys, Muhlenberg 1, D-14776 Potsdam, GermanyUniv Maryland, Dept Phys, College Pk, MD 20742 USA
Sennett, Noah
Buonanno, Alessandra
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maryland, Dept Phys, College Pk, MD 20742 USA
Albert Einstein Inst, Max Planck Inst Gravitat Phys, Muhlenberg 1, D-14776 Potsdam, GermanyUniv Maryland, Dept Phys, College Pk, MD 20742 USA