Selections generating new topologies

被引:5
作者
Gutev, Valentin
Tomita, Artur
机构
[1] Univ KwaZulu Natal, Fac Sci, Sch Math Sci, ZA-4041 Durban, South Africa
[2] Univ Sao Paulo, Dept Matemat, Inst Matemat & Estatist, BR-05315970 Sao Paulo, Brazil
关键词
hyperspace topology; Vietoris topology; continuous selection;
D O I
10.5565/PUBLMAT_51107_01
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Every (continuous) selection for the non-empty 2-point subsets of a space X naturally defines in interval-like topology on X. In the present paper, we demonstrate that, for a second-countable zero-dimensional space X, this topology may fail to be first-countable at some (or, even any) point of X. This settles some problems stated in [7].
引用
收藏
页码:3 / 15
页数:13
相关论文
共 14 条
[1]   Ordered topological spaces [J].
Eilenberg, S .
AMERICAN JOURNAL OF MATHEMATICS, 1941, 63 :39-45
[2]  
ENGELKING R, 1989, SIGMA SERIES PURE MA, V6
[3]  
GARCIAFERREIRA S, 2006, IN PRESS NZ J MATH
[4]   A topology generated by selections [J].
Gutev, V ;
Nogura, T .
TOPOLOGY AND ITS APPLICATIONS, 2005, 153 (5-6) :900-911
[5]   Vietoris continuous selections and disconnectedness-like properties [J].
Gutev, V ;
Nogura, T .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (09) :2809-2815
[6]  
Gutev V., 2004, APPL GEN TOPOL, V5, P71
[7]  
Gutev V., 2001, APPL GEN TOPOL, V2, P205
[8]  
Herrlich H, 1965, MATH ANN, V159, P77, DOI [10.1007/BF01360281, DOI 10.1007/BF01360281]
[9]  
Lynn I. L., 1962, P AM MATH SOC, V13, P454
[10]  
MICHAEL E, 1951, T AM MATH SOC, V71, P152