Boundedness of sublinear operators in Triebel-Lizorkin spaces via atoms

被引:12
|
作者
Liu, Liguang [1 ]
Yang, Dachun [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
基金
美国国家科学基金会;
关键词
Triebel-Lizorkin space; Lusin area function; atom; sublinear operator; quasi-Banach space; HARDY-SPACES; DECOMPOSITIONS;
D O I
10.4064/sm190-2-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let s is an element of R, p is an element of (0, 1] and q is an element of [p, infinity). It is proved that a sublinear operator T uniquely extends to a bounded sublinear operator from the Triebel-Lizorkin space (F)over dot(p,q)(s)(R-n) to a quasi-Banach space B if and only if sup{parallel to T(a)parallel to B : a is an infinitely differentiable (p,q,s)-atom (F)over dot(p,q)(s)(R-n)} < infinity where the (p, q, s)-atom of (F)over dot(p,q)(s)(R-n) is as defined by Han, Paluszynski and Weiss.
引用
收藏
页码:163 / 183
页数:21
相关论文
共 50 条
  • [1] The boundedness of commutators of sublinear operators on Herz Triebel-Lizorkin spaces
    Chenglong Fang
    Jiang Zhou
    Indian Journal of Pure and Applied Mathematics, 2021, 52 : 375 - 383
  • [2] The boundedness of commutators of sublinear operators on Herz Triebel-Lizorkin spaces
    Fang, Chenglong
    Zhou, Jiang
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2021, 52 (02): : 375 - 383
  • [3] Erratum to: The boundedness of commutators of sublinear operators on Herz Triebel-Lizorkin spaces
    Chenglong Fang
    Jiang Zhou
    Indian Journal of Pure and Applied Mathematics, 2022, 53 : 811 - 811
  • [4] The Boundedness of Commutators of Sublinear Operators on Herz Triebel-Lizorkin Spaces with Variable Exponent
    Fang, Chenglong
    Wei, Yingying
    Zhang, Jing
    RESULTS IN MATHEMATICS, 2023, 78 (02)
  • [5] Multilinear Commutators of Sublinear Operators on Triebel-Lizorkin Spaces
    Xie Ru-long
    Shu Li-sheng
    Zhang Qian-xiang
    Ji You-qing
    Communications in Mathematical Research, 2014, 30 (02) : 168 - 178
  • [6] On the boundedness of operators in Lp (lq) and Triebel-Lizorkin Spaces
    Boto, Joao Pedro
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2008, 6 (02): : 177 - 186
  • [7] ON BOUNDEDNESS OF SUPERPOSITION OPERATORS IN SPACES OF TRIEBEL-LIZORKIN TYPE
    SICKEL, W
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1989, 39 (02) : 323 - 347
  • [8] BOUNDEDNESS AND CONTINUITY FOR VARIATION OPERATORS ON THE TRIEBEL-LIZORKIN SPACES
    Liu, Feng
    Wen, Yongming
    Zhang, Xiao
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 59 (06) : 1539 - 1555
  • [9] BOUNDEDNESS OF ROUGH INTEGRAL OPERATORS ON TRIEBEL-LIZORKIN SPACES
    Al-Qassem, H. M.
    Cheng, L. C.
    Pan, Y.
    PUBLICACIONS MATEMATIQUES, 2012, 56 (02) : 261 - 277
  • [10] BOUNDEDNESS OF CONVOLUTION OPERATORS ON TRIEBEL-LIZORKIN SPACES VIA FOURIER TRANSFORM ESTIMATES
    Xia, Xia
    Lu, Shanzhen
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2011, 4 (03): : 201 - 218