Boundedness of sublinear operators in Triebel-Lizorkin spaces via atoms

被引:12
作者
Liu, Liguang [1 ]
Yang, Dachun [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
基金
美国国家科学基金会;
关键词
Triebel-Lizorkin space; Lusin area function; atom; sublinear operator; quasi-Banach space; HARDY-SPACES; DECOMPOSITIONS;
D O I
10.4064/sm190-2-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let s is an element of R, p is an element of (0, 1] and q is an element of [p, infinity). It is proved that a sublinear operator T uniquely extends to a bounded sublinear operator from the Triebel-Lizorkin space (F)over dot(p,q)(s)(R-n) to a quasi-Banach space B if and only if sup{parallel to T(a)parallel to B : a is an infinitely differentiable (p,q,s)-atom (F)over dot(p,q)(s)(R-n)} < infinity where the (p, q, s)-atom of (F)over dot(p,q)(s)(R-n) is as defined by Han, Paluszynski and Weiss.
引用
收藏
页码:163 / 183
页数:21
相关论文
共 27 条
[1]  
Aoki T., 1942, Proc. Imp. Acad. (Tokyo), V18, P588
[2]   Boundedness of operators on Hardy spaces via atomic decompositions [J].
Bownik, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (12) :3535-3542
[3]  
BOWNIK M, WEIGHTED ANISO UNPUB
[4]   A CONTINUOUS VERSION OF DUALITY OF H-1 WITH BMO ON THE BIDISC [J].
CHANG, SYA ;
FEFFERMAN, R .
ANNALS OF MATHEMATICS, 1980, 112 (01) :179-201
[5]   Certain operators with rough singular kernels [J].
Chen, JC ;
Fan, DS ;
Ying, YM .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2003, 55 (03) :504-532
[6]  
Chen ZG, 2005, J WUHAN UNIV TECHNOL, V20, P9
[7]  
Coifman R., 1971, Lect. Notes Math. 242, Etude de certaines integrales singulieres, V242
[8]   EXTENSIONS OF HARDY SPACES AND THEIR USE IN ANALYSIS [J].
COIFMAN, RR ;
WEISS, G .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 83 (04) :569-645
[9]   DECOMPOSITION OF BESOV-SPACES [J].
FRAZIER, M ;
JAWERTH, B .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1985, 34 (04) :777-799
[10]   A DISCRETE TRANSFORM AND DECOMPOSITIONS OF DISTRIBUTION SPACES [J].
FRAZIER, M ;
JAWERTH, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 93 (01) :34-170