Respiratory Motion Modelling Using cGANs

被引:12
作者
Giger, Alina [1 ]
Sandkuhler, Robin [1 ]
Jud, Christoph [1 ]
Bauman, Grzegorz [1 ,2 ]
Bieri, Oliver [1 ,2 ]
Salomir, Rares [3 ]
Cattin, Philippe C. [1 ]
机构
[1] Univ Basel, Dept Biomed Engn, Allschwil, Switzerland
[2] Univ Hosp Basel, Dept Radiol, Div Radiol Phys, Basel, Switzerland
[3] Univ Geneva, Image Guided Intervent Lab, Geneva, Switzerland
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT IV | 2018年 / 11073卷
基金
瑞士国家科学基金会;
关键词
Respiratory motion model; 4D MRI; cGAN; NEURAL-NETWORK; ORGAN MOTION; PREDICTION;
D O I
10.1007/978-3-030-00937-3_10
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Respiratory motion models in radiotherapy are considered as one possible approach for tracking mobile tumours in the thorax and abdomen with the goal to ensure target coverage and dose conformation. We present a patient-specific motion modelling approach which combines navigator-based 4D MRI with recent developments in deformable image registration and deep neural networks. The proposed regression model based on conditional generative adversarial nets (cGANs) is trained to learn the relation between temporally related US and MR navigator images. Prior to treatment, simultaneous ultrasound (US) and 4D MRI data is acquired. During dose delivery, online US imaging is used as surrogate to predict complete 3D MR volumes of different respiration states ahead of time. Experimental validations on three volunteer lung datasets demonstrate the potential of the proposed model both in terms of qualitative and quantitative results, and computational time required.
引用
收藏
页码:81 / 88
页数:8
相关论文
共 12 条
[2]   Tumour Movement in Proton Therapy: Solutions and Remaining Questions: A Review [J].
De Ruysscher, Dirk ;
Sterpin, Edmond ;
Haustermans, Karin ;
Depuydt, Tom .
CANCERS, 2015, 7 (03) :1143-1153
[3]   A comparison of neural network approaches for on-line prediction in IGRT [J].
Goodband, J. H. ;
Haas, O. C. L. ;
Mills, J. A. .
MEDICAL PHYSICS, 2008, 35 (03) :1113-1122
[4]   Generative Adversarial Networks [J].
Goodfellow, Ian ;
Pouget-Abadie, Jean ;
Mirza, Mehdi ;
Xu, Bing ;
Warde-Farley, David ;
Ozair, Sherjil ;
Courville, Aaron ;
Bengio, Yoshua .
COMMUNICATIONS OF THE ACM, 2020, 63 (11) :139-144
[5]   On using an adaptive neural network to predict lung tumor motion during respiration for radiotherapy applications [J].
Isaksson, M ;
Jalden, J ;
Murphy, MJ .
MEDICAL PHYSICS, 2005, 32 (12) :3801-3809
[6]  
Isola Phillip, 2017, C COMPUTER VISION PA
[7]   Respiratory motion models: A review [J].
McClelland, J. R. ;
Hawkes, D. J. ;
Schaeffter, T. ;
King, A. P. .
MEDICAL IMAGE ANALYSIS, 2013, 17 (01) :19-42
[8]   Intra- and Inter-Fractional Variation Prediction of Lung Tumors Using Fuzzy Deep Learning [J].
Park, Seonyeong ;
Lee, Suk Jin ;
Weiss, Elisabeth ;
Motai, Yuichi .
IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE, 2016, 4
[9]   Hybrid MRI-Ultrasound acquisitions, and scannerless real-time imaging [J].
Preiswerk, Frank ;
Toews, Matthew ;
Cheng, Cheng-Chieh ;
Chiou, Jr-yuan George ;
Mei, Chang-Sheng ;
Schaefer, Lena F. ;
Hoge, W. Scott ;
Schwartz, Benjamin M. ;
Panych, Lawrence P. ;
Madore, Bruno .
MAGNETIC RESONANCE IN MEDICINE, 2017, 78 (03) :897-908
[10]   Model-guided respiratory organ motion prediction of the liver from 2D ultrasound [J].
Preiswerk, Frank ;
De Luca, Valeria ;
Arnold, Patrik ;
Celicanin, Zarko ;
Petrusca, Lorena ;
Tanner, Christine ;
Bieri, Oliver ;
Salomir, Rares ;
Cattin, Philippe C. .
MEDICAL IMAGE ANALYSIS, 2014, 18 (05) :740-751