Texture analysis of sonographic muscle images can distinguish myopathic conditions

被引:19
作者
Nodera, Hiroyuki [1 ,5 ]
Sogawa, Kazuki [3 ]
Takamatsu, Naoko [1 ]
Hashiguchi, Shuji [2 ]
Saito, Miho [2 ]
Mori, Atsuko [1 ,4 ]
Osaki, Yusuke [1 ]
Izumi, Yuishin [1 ]
Kaji, Ryuuji [1 ]
机构
[1] Tokushima Univ, Dept Neurol, Tokushima, Japan
[2] Tokushima Hosp, Tokushima, Japan
[3] Tokushima Univ, Fac Med, Tokushima, Japan
[4] Itsuki Hosp, Tokushima, Japan
[5] Kanazawa Med Univ, Dept Neurol, Kanazawa, Ishikawa, Japan
关键词
myopathy; texture analysis; muscle ultrasound; machine learning; ECHOGENICITY;
D O I
10.2152/jmi.66.237
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Given the recent technological advent of muscle ultrasound (US), classification of various myopathic conditions could be possible, especially by mathematical analysis of muscular fine structure called texture analysis. We prospectively enrolled patients with three neuromuscular conditions and their lower leg US images were quantitatively analyzed by texture analysis and machine learning methodology in the following subjects : Inclusion body myositis (IBM) [N=11]; myotonic dystrophy type 1 (DM1) [N=19] ; polymyositis/dermatomyositis (PM-DM) [N=21]. Although three-group analysis achieved up to 58.8% accuracy, two-group analysis of IBM plus PM-DM versus DM1 showed 78.4% accuracy. Despite the small number of subjects, texture analysis of muscle US followed by machine learning might be expected to be useful in identifying myopathic conditions.
引用
收藏
页码:237 / 240
页数:4
相关论文
共 10 条
  • [1] Texture analysis of ultrasound images is a sensitive method to follow-up muscle damage induced by eccentric exercise
    da Matta, Thiago Torres
    de Albuquerque Pereira, Wagner Coelho
    Radaelli, Regis
    Pinto, Ronei Silveira
    de Oliveira, Liliam Fernandes
    [J]. CLINICAL PHYSIOLOGY AND FUNCTIONAL IMAGING, 2018, 38 (03) : 477 - 482
  • [2] Investigation of the freely available easy-to-use software 'EZR' for medical statistics
    Kanda, Y.
    [J]. BONE MARROW TRANSPLANTATION, 2013, 48 (03) : 452 - 458
  • [3] Texture Analysis: A Review of Neurologic MR Imaging Applications
    Kassner, A.
    Thornhill, R. E.
    [J]. AMERICAN JOURNAL OF NEURORADIOLOGY, 2010, 31 (05) : 809 - 816
  • [4] Kumbhare D, 2018, J ULTRASOUND
  • [5] CT Texture Analysis: Definitions, Applications, Biologic Correlates, and Challenges
    Lubner, Meghan G.
    Smith, Andrew D.
    Sandrasegaran, Kumar
    Sahani, Dushyant V.
    Pickhardt, Perry J.
    [J]. RADIOGRAPHICS, 2017, 37 (05) : 1483 - U304
  • [6] Intramuscular dissociation of echogenicity in the triceps surae characterizes sporadic inclusion body myositis
    Nodera, H.
    Takamatsu, N.
    Matsui, N.
    Mori, A.
    Terasawa, Y.
    Shimatani, Y.
    Osaki, Y.
    Maruyama, K.
    Izumi, Y.
    Kaji, R.
    [J]. EUROPEAN JOURNAL OF NEUROLOGY, 2016, 23 (03) : 588 - 596
  • [7] Radiomics: the facts and the challenges of image analysis
    Rizzo S.
    Botta F.
    Raimondi S.
    Origgi D.
    Fanciullo C.
    Morganti A.G.
    Bellomi M.
    [J]. European Radiology Experimental, 2 (1)
  • [8] Neurogenic and Myogenic Diseases: Quantitative Texture Analysis of Muscle US Data for Differentiation
    Sogawa, Kazuki
    Nodera, Hiroyuki
    Takamatsu, Naoko
    Mori, Atsuko
    Yamazaki, Hiroki
    Shimatani, Yoshimitsu
    Izumi, Yuishin
    Kaji, Ryuji
    [J]. RADIOLOGY, 2017, 283 (02) : 492 - 498
  • [9] MaZda-A software package for image texture analysis
    Szczypinski, Piotr M.
    Strzelecki, Michal
    Materka, Andrzej
    Klepaczko, Artur
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2009, 94 (01) : 66 - 76
  • [10] Preferential changes of skeletal muscle echogenicity in myotonic dystrophy type 1
    Takamatsu, N.
    Sogawa, K.
    Nodera, H.
    Hashiguchi, S.
    Osaki, Y.
    Saito, M.
    Mori, A.
    Izumi, Y.
    Kaji, R.
    [J]. EUROPEAN JOURNAL OF NEUROLOGY, 2017, 24 (02) : 366 - 373