Hamiltonian Structure, Symmetries and Conservation Laws for a Generalized (2+1)-Dimensional Double Dispersion Equation

被引:3
作者
Recio, Elena [1 ]
Garrido, Tamara M. [1 ]
de la Rosa, Rafael [1 ]
Bruzon, Marfa S. [1 ]
机构
[1] Univ Cadiz, Dept Math, Cadiz 11510, Spain
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 08期
关键词
Lie symmetry; conservation law; double dispersion equation; Boussinesq equation; CAUCHY-PROBLEM;
D O I
10.3390/sym11081031
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper considers a generalized double dispersion equation depending on a nonlinear function f(u) and four arbitrary parameters. This equation describes nonlinear dispersive waves in 2 + 1 dimensions and admits a Lagrangian formulation when it is expressed in terms of a potential variable. In this case, the associated Hamiltonian structure is obtained. We classify all of the Lie symmetries (point and contact) and present the corresponding symmetry transformation groups. Finally, we derive the conservation laws from those symmetries that are variational, and we discuss the physical meaning of the corresponding conserved quantities.
引用
收藏
页数:13
相关论文
共 19 条
[1]   Conservation Laws, Symmetries, and Line Soliton Solutions of Generalized KP and Boussinesq Equations with p-Power Nonlinearities in Two Dimensions [J].
Anco, S. C. ;
Gandarias, M. L. ;
Recio, E. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2018, 197 (01) :1393-1411
[2]   Direct construction method for conservation laws of partial differential equations - Part II: General treatment [J].
Anco, SC ;
Bluman, G .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2002, 13 :567-585
[3]  
Anco SC, 2017, FIELDS I COMMUN, V79, P119, DOI 10.1007/978-1-4939-6969-2_5
[4]  
[Anonymous], 1871, Comptes Rendus de l'Academie des Sciences
[5]  
Bluman G.W., 2009, Applications of Symmetry Methods to Partial Differential Equations
[6]  
Boussinesq J., 1872, J. Math. Pures Appl., V17, P55
[7]   Initial boundary value problem of the generalized cubic double dispersion equation [J].
Chen, GW ;
Wang, YP ;
Wang, SB .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 299 (02) :563-577
[8]   Potential well method for Cauchy problem of generalized double dispersion equations [J].
Liu Yacheng ;
Xu Runzhang .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (02) :1169-1187
[9]   SOLITON SOLUTION OF GENERALIZED 2D BOUSSINESQ EQUATION WITH QUADRATIC AND CUBIC NONLINEARITY [J].
MATSUKAWA, M ;
WATANABE, S ;
TANACA, H .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1989, 58 (03) :827-830
[10]  
Olver Peter J., 2000, APPL LIE GROUPS DIFF, Vsecond