Maximum power extraction on wind turbine systems using block-backstepping with gradient dynamics control

被引:6
作者
Jaramillo-Lopez, Fernando [1 ]
Kenne, Godpromesse [2 ]
Lamnabhi-Lagarrigue, Francoise [1 ]
机构
[1] Supelec, Lab Signaux & Syst, F-91192 Gif Sur Yvette, France
[2] Univ Dschang, IUT FV Bandjoun, Dept Genie Elect, Lab Automat & Informat Appliquee, Dschang, Cameroon
关键词
adaptive control; nonlinear systems; wind turbine systems; wind speed estimation; model-based extremum-seeking algorithms; renewable energy systems; EXTREMUM SEEKING CONTROL; VARIABLE-SPEED; TRACKING ALGORITHMS; POINT TRACKING; FEEDBACK;
D O I
10.1002/acs.2733
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, a novel adaptive control scheme that allows driving a stand-alone variable-speed wind turbine system to its maximum power point is presented. The scheme is based on the regulation of the optimal rotor speed point of the wind turbine. In order to compute the rotor speed reference, a model-based extremum-seeking algorithm is derived. The wind speed signal is necessary to calculate this reference, and a novel artificial neural network is derived to approximate this signal. The neural network does not need off-line learning stage, because a nonlinear dynamics for the weight vector is proposed. A block-backstepping controller is derived to stabilize and to drive the system to the optimal power point; to avoid singularities, the gradient dynamics technique is applied to this controller. Numerical simulations are carried out to show the performance of the controller and the estimator. Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:835 / 858
页数:24
相关论文
共 40 条
  • [1] A review of maximum power point tracking algorithms for wind energy systems
    Abdullah, M. A.
    Yatim, A. H. M.
    Tan, C. W. A.
    Saidur, R.
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2012, 16 (05) : 3220 - 3227
  • [2] Ackermann T, 2005, WIND POWER IN POWER SYSTEMS, P1, DOI 10.1002/0470012684
  • [3] Identification of nonlinear systems with time-varying parameters using a sliding-neural network observer
    Ahmed-Ali, Tarek
    Kenne, Godpromesse
    Lamnabhi-Lagarrigue, Francoise
    [J]. NEUROCOMPUTING, 2009, 72 (7-9) : 1611 - 1620
  • [4] [Anonymous], P IEEE AM CONTR C WA
  • [5] Multivariable control strategy for variable speed, variable pitch wind turbines
    Boukhezzar, B.
    Lupua, L.
    Siguerdidjane, H.
    Hand, M.
    [J]. RENEWABLE ENERGY, 2007, 32 (08) : 1273 - 1287
  • [6] Nonlinear control of variable-speed wind turbines for generator torque limiting and power optimization
    Boukhezzar, B.
    Siguerdidjane, H.
    Hand, M. Maureen
    [J]. JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2006, 128 (04): : 516 - 530
  • [7] PRACTICAL IDENTIFICATION OF NARMAX MODELS USING RADIAL BASIS FUNCTIONS
    CHEN, S
    BILLINGS, SA
    COWAN, CFN
    GRANT, PM
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1990, 52 (06) : 1327 - 1350
  • [8] NONLINEAR-SYSTEM IDENTIFICATION USING NEURAL NETWORKS
    CHEN, S
    BILLINGS, SA
    GRANT, PM
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1990, 51 (06) : 1191 - 1214
  • [9] Growing Neural Gas (GNG)-Based Maximum Power Point Tracking for High-Performance Wind Generator With an Induction Machine
    Cirrincione, Maurizio
    Pucci, Marcello
    Vitale, Gianpaolo
    [J]. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2011, 47 (02) : 861 - 872
  • [10] Fully sensorless robust control of variable-speed wind turbines for efficiency maximization
    Corradini, Maria Letizia
    Ippoliti, Gianluca
    Orlando, Giuseppe
    [J]. AUTOMATICA, 2013, 49 (10) : 3023 - 3031