Influence of Arrestin on the Photodecay of Bovine Rhodopsin

被引:5
作者
Chatterjee, Deep [1 ]
Eckert, Carl Elias [2 ]
Slavov, Chavdar [2 ]
Saxena, Krishna [1 ]
Fuertig, Boris [1 ]
Sanders, Charles R. [3 ]
Gurevich, Vsevolod V. [4 ]
Wachtveitl, Josef [2 ]
Schwalbe, Harald [1 ]
机构
[1] Goethe Univ Frankfurt, Inst Phys & Theoret Chem, D-60438 Frankfurt, Germany
[2] Goethe Univ Frankfurt, Inst Phys & Theoret Chem, D-60438 Frankfurt, Germany
[3] Vanderbilt Univ, Sch Med, Inst Chem Biol, Struct Biol Ctr,Dept Biochem, Nashville, TN 37232 USA
[4] Vanderbilt Univ, Sch Med, Dept Pharmacol, Nashville, TN 37232 USA
关键词
arrestin; NMR spectroscopy; retinal regeneration; rhodopsin; UV/Vis spectroscopy; HIGH-LEVEL EXPRESSION; CRYSTAL-STRUCTURE; SPLICE VARIANT; METARHODOPSIN-III; NMR-SPECTROSCOPY; VISUAL ARRESTIN; C-TERMINUS; PROTEIN; LIGHT; MOVEMENT;
D O I
10.1002/anie.201505798
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Continued activation of the photocycle of the dim-light receptor rhodopsin leads to the accumulation of all-trans-retinal in the rod outer segments (ROS). This accumulation can damage the photoreceptor cell. For retinal homeostasis, deactivation processes are initiated in which the release of retinal is delayed. One of these processes involves the binding of arrestin to rhodopsin. Here, the interaction of pre-activated truncated bovine visual arrestin (Arr(Tr)) with rhodopsin in 1,2-diheptanoyl-sn-glycero-3-phosphocholine (DHPC) micelles is investigated by solution NMR techniques and flash photolysis spectroscopy. Our results show that formation of the rhodopsin-arrestin complex markedly influences partitioning in the decay kinetics of rhodopsin, which involves the simultaneous formation of a metaII and a metaIII state from the metaI state. Binding of Arr(Tr) leads to an increase in the population of the metaIII state and consequently to an approximately twofold slower release of all-trans-retinal from rhodopsin.
引用
收藏
页码:13555 / 13560
页数:6
相关论文
共 54 条
[1]   High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation [J].
Altenbach, Christian ;
Kusnetzow, Ana Karin ;
Ernst, Oliver P. ;
Hofmann, Klaus Peter ;
Hubbell, Wayne L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (21) :7439-7444
[2]  
[Anonymous], 2014, ANGEW CHEM, V126, P2110
[3]  
[Anonymous], 2006, ANGEW CHEM, V118, P4376
[4]   G proteins and phototransduction [J].
Arshavsky, VY ;
Lamb, TD ;
Pugh, EN .
ANNUAL REVIEW OF PHYSIOLOGY, 2002, 64 :153-187
[5]   Structural and functional properties of metarhodopsin III: Recent spectroscopic studies on deactivation pathways of rhodopsin [J].
Bartl, Franz J. ;
Vogel, Reiner .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2007, 9 (14) :1648-1658
[6]   Control of rhodopsin activity in vision [J].
Baylor, DA ;
Burns, ME .
EYE, 1998, 12 (3) :521-525
[7]   Reduction of all-trans retinal to all-trans retinol in the outer segments of frog and mouse rod photoreceptors [J].
Chen, CH ;
Tsina, E ;
Cornwall, MC ;
Crouch, RK ;
Vijayaraghavan, S ;
Koutalos, Y .
BIOPHYSICAL JOURNAL, 2005, 88 (03) :2278-2287
[8]   Crystal structure of metarhodopsin II [J].
Choe, Hui-Woog ;
Kim, Yong Ju ;
Park, Jung Hee ;
Morizumi, Takefumi ;
Pai, Emil F. ;
Krauss, Norbert ;
Hofmann, Klaus Peter ;
Scheerer, Patrick ;
Ernst, Oliver P. .
NATURE, 2011, 471 (7340) :651-U137
[9]   Relevance of rhodopsin studies for GPCR activation [J].
Deupi, Xavier .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2014, 1837 (05) :674-682
[10]   Conformational changes in rhodopsin - Movement of helix F detected by site-specific chemical labeling and fluorescence spectroscopy [J].
Dunham, TD ;
Farrens, DL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (03) :1683-1690