Extremal limit of the regular charged black holes in nonlinear electrodynamics

被引:52
作者
Matyjasek, J [1 ]
机构
[1] Marie Curie Sklodowska Univ, Inst Phys, PL-20031 Lublin, Poland
来源
PHYSICAL REVIEW D | 2004年 / 70卷 / 04期
关键词
D O I
10.1103/PhysRevD.70.047504
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Solutions of the coupled equations of general relativity and nonlinear electrodynamics with topology AdS(2)xS(2) are constructed and studied both analytically and numerically. It is shown that the near horizon limit of the extreme nonlinear black hole corresponds to the solution expressible in terms of the Lambert special functions. It is explicitly demonstrated that for the formulation of the nonlinear theory considered in this paper the resulting solutions do not belong to the Bertotti-Robinson class unless electrodynamics is Maxwellian. The question of the boundary conditions is briefly discussed.
引用
收藏
页数:4
相关论文
共 31 条
[1]  
[Anonymous], 1959, Bull.Acad.Pol.Sci.Ser.Sci.Math.Astron.Phys
[2]   New regular black hole solution from nonlinear electrodynamics [J].
Ayón-Beato, E ;
García, A .
PHYSICS LETTERS B, 1999, 464 (1-2) :25-29
[3]  
Bardeen J, 1999, PHYS REV D, V60, DOI 10.1103/PhysRevD.60.104030
[4]  
Bardeen J.M, 1968, GR 5 P TBIL
[5]   UNIFORM ELECTROMAGNETIC FIELD IN THE THEORY OF GENERAL RELATIVITY [J].
BERTOTTI, B .
PHYSICAL REVIEW, 1959, 116 (05) :1331-1333
[6]   Regular black holes and topology change [J].
Borde, A .
PHYSICAL REVIEW D, 1997, 55 (12) :7615-7617
[7]   SCALAR, ELECTROMAGNETIC, AND GRAVITATIONAL-FIELDS INTERACTION - PARTICLE-LIKE SOLUTIONS [J].
BRONNIKOV, KA ;
MELNIKOV, VN ;
SHIKIN, GN ;
STANIUKOVICH, KP .
ANNALS OF PHYSICS, 1979, 118 (01) :84-107
[8]   Comment on "Regular black hole in general relativity coupled to nonlinear electrodynamics" [J].
Bronnikov, KA .
PHYSICAL REVIEW LETTERS, 2000, 85 (21) :4641-4641
[9]   Regular magnetic black holes and monopoles from nonlinear electrodynamics [J].
Bronnikov, KA .
PHYSICAL REVIEW D, 2001, 63 (04)
[10]   Regular sources of the Kerr-Schild class for rotating and nonrotating black hole solutions [J].
Burinskii, A ;
Elizalde, E ;
Hildebrandt, SR ;
Magli, G .
PHYSICAL REVIEW D, 2002, 65 (06)