Hysteresis of the Earth system under positive and negative CO2 emissions

被引:44
作者
Jeltsch-Thommes, Aurich [1 ]
Stocker, Thomas F.
Joos, Fortunat
机构
[1] Univ Bern, Climate & Environm Phys, Phys Inst, Bern, Switzerland
基金
瑞士国家科学基金会; 欧盟地平线“2020”;
关键词
carbon dioxide removal; positive and negative emissions; hysteresis of the Earth system; carbon cycle; climate modeling; ATMOSPHERIC CARBON-DIOXIDE; CLIMATE; MODEL; OCEAN; TERM; FEEDBACKS; REMOVAL; PROPORTIONALITY; VENTILATION; STABILITY;
D O I
10.1088/1748-9326/abc4af
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Carbon dioxide removal (CDR) from the atmosphere is part of all emission scenarios of the IPCC that limit global warming to below 1.5 degrees C. Here, we investigate hysteresis characteristics in 4x pre-industrial atmospheric CO2 concentration scenarios with exponentially increasing and decreasing CO2 using the Bern3D-LPX Earth system model of intermediate complexity. The equilibrium climate sensitivity (ECS) and the rate of CDR are systematically varied. Hysteresis is quantified as the difference in a variable between the up and down pathway at identical cumulative carbon emissions. Typically, hysteresis increases non-linearly with increasing ECS, while its dependency on the CDR rate varies across variables. Large hysteresis is found for global surface air temperature (Delta SAT), upper ocean heat content, ocean deoxygenation, and acidification. We find distinct spatial patterns of hysteresis: Delta SAT exhibits strong polar amplification, hysteresis in O-2 is both positive and negative depending on the interplay between changes in remineralization of organic matter and ventilation. Due to hysteresis, sustained negative emissions are required to return to and keep a CO2 and warming target, particularly for high climate sensitivities and the large overshoot scenario considered here. Our results suggest, that not emitting carbon in the first place is preferable over carbon dioxide removal, even if technologies would exist to efficiently remove CO2 from the atmosphere and store it away safely.
引用
收藏
页数:11
相关论文
共 74 条
[1]   Warming caused by cumulative carbon emissions towards the trillionth tonne [J].
Allen, Myles R. ;
Frame, David J. ;
Huntingford, Chris ;
Jones, Chris D. ;
Lowe, Jason A. ;
Meinshausen, Malte ;
Meinshausen, Nicolai .
NATURE, 2009, 458 (7242) :1163-1166
[2]   The Dependence of Radiative Forcing and Feedback on Evolving Patterns of Surface Temperature Change in Climate Models [J].
Andrews, Timothy ;
Gregory, Jonathan M. ;
Webb, Mark J. .
JOURNAL OF CLIMATE, 2015, 28 (04) :1630-1648
[3]   The reversibility of sea ice loss in a state-of-the-art climate model [J].
Armour, K. C. ;
Eisenman, I. ;
Blanchard-Wrigglesworth, E. ;
McCusker, K. E. ;
Bitz, C. M. .
GEOPHYSICAL RESEARCH LETTERS, 2011, 38
[4]   Hazards of decreasing marine oxygen: the near-term and millennial-scale benefits of meeting the Paris climate targets [J].
Battaglia, Gianna ;
Joos, Fortunat .
EARTH SYSTEM DYNAMICS, 2018, 9 (02) :797-816
[5]   A probabilistic assessment of calcium carbonate export and dissolution in the modern ocean [J].
Battaglia, Gianna ;
Steinacher, Marco ;
Joos, Fortunat .
BIOGEOSCIENCES, 2016, 13 (09) :2823-2848
[6]   Reversibility in an Earth System model in response to CO2 concentration changes [J].
Boucher, O. ;
Halloran, P. R. ;
Burke, E. J. ;
Doutriaux-Boucher, M. ;
Jones, C. D. ;
Lowe, J. ;
Ringer, M. A. ;
Robertson, E. ;
Wu, P. .
ENVIRONMENTAL RESEARCH LETTERS, 2012, 7 (02)
[7]  
Collins M., 2013, Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, DOI 10.1017/CBO9781107415324.024
[8]   Historical and idealized climate model experiments: an intercomparison of Earth system models of intermediate complexity [J].
Eby, M. ;
Weaver, A. J. ;
Alexander, K. ;
Zickfeld, K. ;
Abe-Ouchi, A. ;
Cimatoribus, A. A. ;
Crespin, E. ;
Drijfhout, S. S. ;
Edwards, N. R. ;
Eliseev, A. V. ;
Feulner, G. ;
Fichefet, T. ;
Forest, C. E. ;
Goosse, H. ;
Holden, P. B. ;
Joos, F. ;
Kawamiya, M. ;
Kicklighter, D. ;
Kienert, H. ;
Matsumoto, K. ;
Mokhov, I. I. ;
Monier, E. ;
Olsen, S. M. ;
Pedersen, J. O. P. ;
Perrette, M. ;
Philippon-Berthier, G. ;
Ridgwell, A. ;
Schlosser, A. ;
von Deimling, T. Schneider ;
Shaffer, G. ;
Smith, R. S. ;
Spahni, R. ;
Sokolov, A. P. ;
Steinacher, M. ;
Tachiiri, K. ;
Tokos, K. ;
Yoshimori, M. ;
Zeng, N. ;
Zhao, F. .
CLIMATE OF THE PAST, 2013, 9 (03) :1111-1140
[9]  
Edwards NR, 1998, J PHYS OCEANOGR, V28, P756, DOI 10.1175/1520-0485(1998)028<0756:OTROTA>2.0.CO
[10]  
2