Highly nonlinear transport across single-molecule junctions via destructive quantum interference

被引:77
作者
Greenwald, Julia E. [1 ]
Cameron, Joseph [2 ]
Findlay, Neil J. [2 ]
Fu, Tianren [1 ]
Gunasekaran, Suman [1 ]
Skabara, Peter J. [2 ]
Venkataraman, Latha [1 ,3 ]
机构
[1] Columbia Univ, Dept Chem, New York, NY 10027 USA
[2] Univ Glasgow, Sch Chem, WestCHEM, Glasgow, Lanark, Scotland
[3] Columbia Univ, Dept Appl Phys & Math, New York, NY 10027 USA
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
ELECTRON-TRANSPORT; CONDUCTANCE; RESISTANCE;
D O I
10.1038/s41565-020-00807-x
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
To rival the performance of modern integrated circuits, single-molecule devices must be designed to exhibit extremely nonlinear current-voltage (I-V) characteristics(1-4). A common approach is to design molecular backbones where destructive quantum interference (QI) between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) produces a nonlinear energy-dependent tunnelling probability near the electrode Fermi energy (E-F)(5-8). However, tuning such systems is not straightforward, as aligning the frontier orbitals to E-F is hard to control(9). Here, we instead create a molecular system where constructive QI between the HOMO and LUMO is suppressed and destructive QI between the HOMO and strongly coupled occupied orbitals of opposite phase is enhanced. We use a series of fluorene oligomers containing a central benzothiadiazole(10) unit to demonstrate that this strategy can be used to create highly nonlinear single-molecule circuits. Notably, we are able to reproducibly modulate the conductance of a 6-nm molecule by a factor of more than 10(4). The conductance of a six-nanometre molecular wire can be reproducibly modulated by a factor of more than 1 x 10(4) at room temperature by enhancing destructive quantum interference amongst occupied molecular orbitals.
引用
收藏
页码:313 / +
页数:15
相关论文
共 39 条
[21]   Near Length-Independent Conductance in Polymethine Molecular Wires [J].
Gunasekaran, Suman ;
Hernangomez-Perez, Daniel ;
Davydenko, Iryna ;
Marder, Seth ;
Evers, Ferdinand ;
Venkataraman, Latha .
NANO LETTERS, 2018, 18 (10) :6387-6391
[22]   Electronic decay constant of carotenoid polyenes from single-molecule measurements [J].
He, J ;
Chen, F ;
Li, J ;
Sankey, OF ;
Terazono, Y ;
Herrero, C ;
Gust, D ;
Moore, TA ;
Moore, AL ;
Lindsay, SM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (05) :1384-1385
[23]   An MCBJ case study: The influence of π-conjugation on the single-molecule conductance at a solid/liquid interface [J].
Hong, Wenjing ;
Valkenier, Hennie ;
Meszaros, Gabor ;
Manrique, David Zsolt ;
Mishchenko, Artem ;
Putz, Alexander ;
Garcia, Pavel Moreno ;
Lambert, Colin J. ;
Hummelen, Jan C. ;
Wandlowski, Thomas .
BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2011, 2 :699-713
[24]   Quantum-Interference-Controlled Molecular Electronics [J].
Ke, San-Huang ;
Yang, Weitao ;
Baranger, Harold U. .
NANO LETTERS, 2008, 8 (10) :3257-3261
[25]   Zero-bias molecular electronics: Exchange-correlation corrections to Landauer's formula [J].
Koentopp, M ;
Burke, K ;
Evers, F .
PHYSICAL REVIEW B, 2006, 73 (12)
[26]   Conductance of a Single Conjugated Polymer as a Continuous Function of Its Length [J].
Lafferentz, Leif ;
Ample, Francisco ;
Yu, Hao ;
Hecht, Stefan ;
Joachim, Christian ;
Grill, Leonhard .
SCIENCE, 2009, 323 (5918) :1193-1197
[27]   Basic concepts of quantum interference and electron transport in single-molecule electronics [J].
Lambert, C. J. .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (04) :875-888
[28]   Progress with Molecular Electronic Junctions: Meeting Experimental Challenges in Design and Fabrication [J].
McCreery, Richard L. ;
Bergren, Adam Johan .
ADVANCED MATERIALS, 2009, 21 (43) :4303-4322
[29]  
Perdew JP, 1996, PHYS REV LETT, V77, P3865, DOI 10.1103/PhysRevLett.77.3865
[30]   Phase measurement in a quantum dot via a double-slit interference experiment [J].
Schuster, R ;
Buks, E ;
Heiblum, M ;
Mahalu, D ;
Umansky, V ;
Shtrikman, H .
NATURE, 1997, 385 (6615) :417-420