Highly nonlinear transport across single-molecule junctions via destructive quantum interference

被引:77
作者
Greenwald, Julia E. [1 ]
Cameron, Joseph [2 ]
Findlay, Neil J. [2 ]
Fu, Tianren [1 ]
Gunasekaran, Suman [1 ]
Skabara, Peter J. [2 ]
Venkataraman, Latha [1 ,3 ]
机构
[1] Columbia Univ, Dept Chem, New York, NY 10027 USA
[2] Univ Glasgow, Sch Chem, WestCHEM, Glasgow, Lanark, Scotland
[3] Columbia Univ, Dept Appl Phys & Math, New York, NY 10027 USA
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
ELECTRON-TRANSPORT; CONDUCTANCE; RESISTANCE;
D O I
10.1038/s41565-020-00807-x
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
To rival the performance of modern integrated circuits, single-molecule devices must be designed to exhibit extremely nonlinear current-voltage (I-V) characteristics(1-4). A common approach is to design molecular backbones where destructive quantum interference (QI) between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) produces a nonlinear energy-dependent tunnelling probability near the electrode Fermi energy (E-F)(5-8). However, tuning such systems is not straightforward, as aligning the frontier orbitals to E-F is hard to control(9). Here, we instead create a molecular system where constructive QI between the HOMO and LUMO is suppressed and destructive QI between the HOMO and strongly coupled occupied orbitals of opposite phase is enhanced. We use a series of fluorene oligomers containing a central benzothiadiazole(10) unit to demonstrate that this strategy can be used to create highly nonlinear single-molecule circuits. Notably, we are able to reproducibly modulate the conductance of a 6-nm molecule by a factor of more than 10(4). The conductance of a six-nanometre molecular wire can be reproducibly modulated by a factor of more than 1 x 10(4) at room temperature by enhancing destructive quantum interference amongst occupied molecular orbitals.
引用
收藏
页码:313 / +
页数:15
相关论文
共 39 条
[1]   Single Molecule Electronics: Increasing Dynamic Range and Switching Speed Using Cross-Conjugated Species [J].
Andrews, David Q. ;
Solomon, Gemma C. ;
Van Duyne, Richard P. ;
Ratner, Mark A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (51) :17309-17319
[2]   Quantum chemistry calculations for molecules coupled to reservoirs: Formalism, implementation, and application to benzenedithiol [J].
Arnold, A. ;
Weigend, F. ;
Evers, F. .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (17)
[3]   Single-molecule electrical studies on a 7 nm long molecular wire [J].
Ashwell, Geoffrey J. ;
Urasinska, Barbara ;
Wang, Changsheng ;
Bryce, Martin R. ;
Grace, Iain ;
Lambert, Colin J. .
CHEMICAL COMMUNICATIONS, 2006, (45) :4706-4708
[4]   Phase coherent electronics: A molecular switch based on quantum interference [J].
Baer, R ;
Neuhauser, D .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (16) :4200-4201
[5]   Spin-Polarized Electron Transport Across Metal-Organic Molecules: A Density Functional Theory Approach [J].
Bagrets, Alexei .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (06) :2801-2815
[6]   Anti-resonance features of destructive quantum interference in single-molecule thiophene junctions achieved by electrochemical gating [J].
Bai, Jie ;
Daaoub, Abdalghani ;
Sangtarash, Sara ;
Li, Xiaohui ;
Tang, Yongxiang ;
Zou, Qi ;
Sadeghi, Hatef ;
Liu, Shuai ;
Huang, Xiaojuan ;
Tan, Zhibing ;
Liu, Junyang ;
Yang, Yang ;
Shi, Jia ;
Meszaros, Gabor ;
Chen, Wenbo ;
Lambert, Colin ;
Hong, Wenjing .
NATURE MATERIALS, 2019, 18 (04) :364-+
[7]   Location, Location, Location - Strategic Positioning of 2,1,3-Benzothiadiazole Units within Trigonal Quaterfluorene-Truxene Star-Shaped Structures [J].
Belton, Colin R. ;
Kanibolotsky, Alexander L. ;
Kirkpatrick, James ;
Orofino, Clara ;
Elmasly, Saadeldin E. T. ;
Stavrinou, Paul N. ;
Skabara, Peter J. ;
Bradley, Donal D. C. .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (22) :2792-2804
[8]   Ab initio molecular simulations with numeric atom-centered orbitals [J].
Blum, Volker ;
Gehrke, Ralf ;
Hanke, Felix ;
Havu, Paula ;
Havu, Ville ;
Ren, Xinguo ;
Reuter, Karsten ;
Scheffler, Matthias .
COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (11) :2175-2196
[9]   Capture of slow neutrons [J].
Breit, G ;
Wigner, E .
PHYSICAL REVIEW, 1936, 49 (07) :0519-0531
[10]  
Capozzi B, 2015, NAT NANOTECHNOL, V10, P522, DOI [10.1038/nnano.2015.97, 10.1038/NNANO.2015.97]