Effective equations governing an active poroelastic medium

被引:44
作者
Collis, J. [1 ]
Brown, D. L. [1 ]
Hubbard, M. E. [1 ]
O'Dea, R. D. [1 ]
机构
[1] Univ Nottingham, Sch Math Sci, Univ Pk, Nottingham NG7 2RD, England
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2017年 / 473卷 / 2198期
基金
英国工程与自然科学研究理事会;
关键词
multiscale asymptotics; fluid-structure interaction; poroelasticity; growing media; MODE DECOMPOSITION; UPSCALING METHODS; DRUG TRANSPORT; FINITE GROWTH; HOMOGENIZATION; MULTISCALE; FLUID; FLOW; DEFORMATION; ELASTICITY;
D O I
10.1098/rspa.2016.0755
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this work, we consider the spatial homogenization of a coupled transport and fluid-structure interaction model, to the end of deriving a system of effective equations describing the flow, elastic deformation and transport in an active poroelasticmedium. The 'active' nature of the material results from a morphoelastic response to a chemical stimulant, in which the growth time scale is strongly separated from other elastic time scales. The resulting effective model is broadly relevant to the study of biological tissue growth, geophysical flows (e.g. swelling in coals and clays) and a wide range of industrial applications (e.g. absorbant hygiene products). The key contribution of this work is the derivation of a system of homogenized partial differential equations describing macroscale growth, coupled to transport of solute, that explicitly incorporates details of the structure and dynamics of the microscopic system, and, moreover, admits finite growth and deformation at the pore scale. The resulting macroscale model comprises a Biot-type system, augmented with additional terms pertaining to growth, coupled to an advection-reaction-diffusion equation. The resultant system of effective equations is then compared with other recent models under a selection of appropriate simplifying asymptotic limits.
引用
收藏
页数:27
相关论文
共 87 条
[1]   A reduced basis finite element heterogeneous multiscale method for Stokes flow in porous media [J].
Abdulle, Assyr ;
Budac, Ondrej .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 307 :1-31
[2]   A Petrov-Galerkin reduced basis approximation of the Stokes equation in parameterized geometries [J].
Abdulle, Assyr ;
Budac, Ondrej .
COMPTES RENDUS MATHEMATIQUE, 2015, 353 (07) :641-645
[3]   HOMOGENIZATION AND 2-SCALE CONVERGENCE [J].
ALLAIRE, G .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (06) :1482-1518
[4]   Perspectives on biological growth and remodeling [J].
Ambrosi, D. ;
Ateshian, G. A. ;
Arruda, E. M. ;
Cowin, S. C. ;
Dumais, J. ;
Goriely, A. ;
Holzapfel, G. A. ;
Humphrey, J. D. ;
Kemkemer, R. ;
Kuhl, E. ;
Olberding, J. E. ;
Taber, L. A. ;
Garikipati, K. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2011, 59 (04) :863-883
[5]  
[Anonymous], 1956, J. Appl. Mech, DOI DOI 10.1115/1.4011213
[6]  
[Anonymous], 1978, ASYMPTOTIC ANAL PERI
[7]   In vitro bone growth responds to local mechanical strain in three-dimensional polymer scaffolds [J].
Baas, Elbert ;
Kuiper, Jan Herman ;
Yang, Ying ;
Wood, Mairead A. ;
El Haj, Alicia J. .
JOURNAL OF BIOMECHANICS, 2010, 43 (04) :733-739
[8]  
Bakhvalov N, 1989, STUDIES MATH ITS APP, V36
[9]   Multiscale modelling of auxin transport in the plant-root elongation zone [J].
Band, L. R. ;
King, J. R. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2012, 65 (04) :743-785
[10]   An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations [J].
Barrault, M ;
Maday, Y ;
Nguyen, NC ;
Patera, AT .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (09) :667-672