Wave propagation and its stability for a class of discrete diffusion systems

被引:8
|
作者
Yu, Zhixian [1 ]
Hsu, Cheng-Hsiung [2 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[2] Natl Cent Univ, Dept Math, Taoyuan 32001, Taiwan
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2020年 / 71卷 / 06期
基金
上海市自然科学基金;
关键词
Traveling wave fronts; Super; and subsolutions; Comparison principle; Weighted energy estimate; Exponential stability; TRAVELING-WAVES; EXPONENTIAL STABILITY; ASYMPTOTIC STABILITY; COMPETITION SYSTEM; COUPLED SYSTEMS; EXISTENCE; FRONTS; EQUATIONS; UNIQUENESS; DYNAMICS;
D O I
10.1007/s00033-020-01423-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to investigating the wave propagation and its stability for a class of two-component discrete diffusive systems. We first establish the existence of positive monotone monostable traveling wave fronts. Then, applying the techniques of weighted energy method and the comparison principle, we show that all solutions of the Cauchy problem for the discrete diffusive systems converge exponentially to the traveling wave fronts when the initial perturbations around the wave fronts lie in a suitable weighted Sobolev space. Our main results can be extended to more general discrete diffusive systems. We also apply them to the discrete epidemic model with the Holling-II-type and Richer-type effects.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Wave propagation and its stability for a class of discrete diffusion systems
    Zhixian Yu
    Cheng-Hsiung Hsu
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [2] Stability of traveling wave solutions for a spatially discrete SIS epidemic model
    Hsu, Cheng-Hsiung
    Lin, Jian-Jhong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (02):
  • [3] GLOBAL STABILITY OF TRAVELING WAVES FOR A SPATIALLY DISCRETE DIFFUSION SYSTEM WITH TIME DELAY
    Liu, Ting
    ZHANG, GUO-BAO
    ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (04): : 2599 - 2618
  • [4] Stability of traveling wave fronts for nonlocal diffusive systems
    Meng, Yanling
    Yu, Zhixian
    Zhang, Shengqiang
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2021, 14 (03)
  • [5] STABILITY OF TRAVELING WAVE FRONTS FOR NONLOCAL DIFFUSIVE SYSTEMS
    Zhang, Shengqiang
    Yu, Zhixian
    Meng, Yanling
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (04): : 2063 - 2081
  • [6] INVASION TRAVELING WAVE SOLUTIONS IN TEMPORALLY DISCRETE RANDOM-DIFFUSION SYSTEMS WITH DELAYS
    Xue, Hui
    Huang, Jianhua
    Yu, Zhixian
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2017, 10 (05): : 1107 - 1131
  • [7] Stability Analysis for a Class of Jump-Diffusion Systems with Parameter
    Yang, Hua
    Liu, Jianguo
    Jiang, Feng
    2016 SEVENTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP), 2016, : 217 - 222
  • [8] Traveling wave solutions in temporally discrete reaction-diffusion systems with delays
    Xia, Jing
    Yu, Zhixian
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2011, 91 (10): : 809 - 823
  • [9] Stability of Traveling Wave Fronts for Nonlocal Delayed Reaction Diffusion Systems
    Lu, Guangying
    Wang, Xiaohuan
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2014, 33 (04): : 463 - 480
  • [10] Global stability of traveling wave solutions for a discrete diffusion epidemic model with nonlocal delay effects
    Yang, Zhi-Jiao
    Zhang, Guo-Bao
    Tian, Ge
    JOURNAL OF MATHEMATICAL PHYSICS, 2025, 66 (02)