Optical Detection of Marine Debris Using Deep Knockoff

被引:9
作者
Olyaei, Mohammadali [1 ]
Ebtehaj, Ardeshir [1 ]
Hong, Jiarong [2 ]
机构
[1] Univ Minnesota, Dept Civil Environm & Geoengn, St Anthony Falls Lab, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Dept Mech Engn, St Anthony Falls Lab, Minneapolis, MN 55455 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2022年 / 60卷
关键词
Deep knockoffs; marine debris (MD); optical; remote sesning; Sentinel-2 (S2); short-infrared; UNMANNED AERIAL SYSTEMS; FALSE DISCOVERY RATE; WATER INDEX NDWI; RED-EDGE BANDS; VARIABLE SELECTION; CHLOROPHYLL; LEAF; NANOPLASTICS; REFLECTANCE; ALGORITHMS;
D O I
10.1109/TGRS.2022.3228638
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This article investigates the use of deep knockoff, a modern statistical variable selection methodology, to uncover the spectral signatures of marine debris (MD). This method uses a generative model by leveraging deep neural networks (DNNs) to learn the high-dimensional distribution of reflectance in visible to near infrared (NIR) wavelengths. To that end, a public dataset obtained from ground-based labeling of the observations by the multispectral instrument (MSI) on-board Sentinel-2 (S2) satellite is used. Through controlling the false discovery rate (FDR), consistent with the known physical causalities, the results indicate that the NIR (band 8, 833 nm) and red (band 4, 665 nm) are the most important bands, respectively, for discrimination of marine (plastic) debris from the background water. In the presence of dense Sargassum macroalgae, the deep knockoff isolates the green (band 3, 560 nm) and the narrow NIR (band 8a, 864.7 nm) as another important band.
引用
收藏
页数:12
相关论文
共 91 条
[1]   Valuation of marine plastic pollution in the European Arctic: Applying an integrated choice and latent variable model to contingent valuation [J].
Abate, Tenaw G. ;
Borger, Tobias ;
Aanese, Margrethe ;
Falk-Andersson, Jannike ;
Wyles, Kayleigh J. ;
Beaumont, Nicola .
ECOLOGICAL ECONOMICS, 2020, 169
[2]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[3]  
Akaike H., 1998, Selected papers of hirotugu akaike, P199, DOI [DOI 10.1007/978-1-4612-1694-015, DOI 10.1007/978-1-4612-1694-0_15]
[4]   Ingestion of macroplastics by odontocetes of the Greek Seas, Eastern Mediterranean: Often deadly! [J].
Alexiadou, Paraskevi ;
Foskolos, Ilias ;
Frantzis, Alexandros .
MARINE POLLUTION BULLETIN, 2019, 146 :67-75
[5]   Variable selection in regression-a tutorial [J].
Andersen, C. M. ;
Bro, R. .
JOURNAL OF CHEMOMETRICS, 2010, 24 (11-12) :728-737
[6]   Microplastics in the marine environment [J].
Andrady, Anthony L. .
MARINE POLLUTION BULLETIN, 2011, 62 (08) :1596-1605
[7]  
Anik A.H., 2021, Environ. Nanotechnol. Monit. Manag., V16, DOI [DOI 10.1016/J.ENMM.2021.100530, 10.1016/j.enmm.2021.100530]
[8]  
[Anonymous], 2010, P 27 INT C MACH LEAR
[9]  
[Anonymous], 2005, SENT 2 US HDB, V64
[10]  
Arjovsky M., 2017, arXiv